EEEEEEEEEEEEE EEE @python”

Python
Object-Oriented
Programming

<packth

Python Object-Oriented
Programming

Fifth Edition

Learn how and when to apply OOP principles
to build scalable and maintainable Python
applications

Steven F. Lott

Dusty Phillips

Packt and this book are not officially connected with Python. This book is an effort from
the Python community of experts to help more developers.

Python Object-Oriented Programming

Fifth Edition

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing

cannot guarantee the accuracy of this information.

Portfolio Director: Kunal Chaudhari
Relationship Lead Dhruv J. Kataria
Project Manager: K. Loganathan

Content Engineer: Deepayan Bhattacharjee
Technical Editor: Irfa Ansari

Copy Editor: Safis Editing

Indexer: Hemangini Bari

Proofreader: Deepayan Bhattacharjee
Presentation Designer: Salma Patel
Growth Lead: Mansi Shah

First published: July 2010
Second edition: August 2015
Third edition: October 2018
Fourth edition: June 2021
Fifth edition: November 2025

Production reference: 1261125

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83664-259-6

www . packt.com

www.packt.com

Contributors

About the authors

Steven Lott has been programming since computers were large, expensive, and rare. Working for
decades in high tech has given him exposure to a lot of ideas and techniques—some bad, but most

are useful and helpful to others.

Steven has been working with Python since the ’90s, building a variety of tools and applications.
He’s written a number of titles for Packt Publishing, including Mastering Object-Oriented Python,
Modern Python Cookbook, and Functional Python Programming.

He’s a technomad, and travels extensively around the US. He tries to live by words his mother
shared.

“Don’t come home until you have a story.”

Dusty Phillips is a Canadian author and software developer. His storied career has included roles
with the world’s biggest government, the world’s biggest social network, a two person startup, and
everything in between. In addition to Python Object-Oriented Programming, Dusty wrote Creating
Apps In Kivy (O’Reilly) and is now focused on writing fiction.

Thank you to Steven Lott, for finishing what I started, to all my readers for appreciating what I write,
and to my wife, Jen Phillips, for everything else.

About the reviewer

Alejandro Rodas de Paz is a computer engineer from Seville, Spain. He has been developing
Python projects in both professional and academic settings since 2010, including work on Al

algorithms and DevOps automation.

Prior to this publication, Alejandro wrote Packt’s titles Python Game Development by Example and
Tkinter GUI Application Development Cookbook. He also collaborated as a technical reviewer on the

books Tkinter GUI Application Development Hotshot and Python GUI Programming with Tkinter.

I would like to dedicate my contribution to this book to Frank, Montse and Oliver. I wish you all the

best in this new stage of your lives.

Join our community Discord space

Join our Python Discord workspace to discuss and find out more about the book:

https://packt.link/dHrHU

=] gy [m]

https://packt.link/dHrHU

Table of Contents

Preface XV
Free Benefits with Your Bookooiiiiiii i XX
Chapter 1: Object-Oriented Design 1
Technical requUIrementsoiinininiinin ittt 1
What object-oriented means i 2
Objects and Classesooiuiiin i 4
Specifying attributes and behaviors 7

Data describes object state « 8
Behaviors are actions « 10
Hiding details and creating the public interfacet 12
Design principles 14
Interface Segregation Principle « 15
Open/Closed Principle « 15
Liskov Substitution Principle « 16
Dependency Inversion Principle « 16
Single Responsibility Principle « 17
Collaboration among objectsottt 17
A potential MeSSo 19
Reading a big script « 19

viii Table of Contents

Chapter 2: Objects in Python 25
Technical requirementsoioiuiniiiitii it 26
Introducing types and classes i 26
Creating Python classes i 29

Adding attributes « 31
Making it do something « 32
Talking about yourself « 33
More arguments « 34
Initializing the object « 36
Type hints and defaults « 38
Explaining yourself with docstrings « 39

Composition and decomposition 43
Who can access my data? i e 46
Modules and packages 48

Organizing modules « 51
Absolute imports « 52
Relative imports « 53
Packages as a whole « 54

Organizing our code in modules « 55

Third-party libraries and virtual environmentsc.coiiiiiiiiiiiiiin... 60
Virtual environment managemento it 63
Recall ... 64
(3 0 T 64
SUMMIATY oot e e e e e e e 65
Chapter 3: When Objects Are Alike 67
The inheritance relationship i 68
Using inheritanceo i 70

Extending built-ins « 73
Overriding and super() « 76
Composition as an alternative to inheritanceol 77
Multiple inheritance 78
The diamond problem « 83

Table of Contents ix

Different sets of arguments « 89

PolymorphiSm 93
Recall ... 97
EXOTCISES .ottt e e e e 97
SUIMMATY oo e e e e e e e e e 98
Chapter 4: Expecting the Unexpected 99
Raising eXceptionst e 100

Raising an exception « 103
The effects of an exception « 104

Handling eXceptionsouoniuiiiino ittt 106
The exception hierarchy « 113

Defining our own eXCeptionsc.ouiiuininiiit i 114

Exceptions aren’t exceptional « 117

Recall ..o 121
3 3 =1 121
SUIMIATY ..ot e e s 122
Chapter 5: When to Use Object-Oriented Programming 125
Treat objects as ObJECESo.ue ittt e 126
Adding behaviors to class data with propertieso i 132

Properties in detail « 136
Decorators—another way to create properties « 138

Deciding when to use properties « 140

Scripts to functions to Classeso.iiiii e 143
Recall ... 145
B OTCISES .ottt e e 145
SUMMIATY .ot e e e e e e 146
Chapter 6: Abstract Base Classes and Operator Overloading 149
Creating an abstract base class i 151

The ABCs of collections « 154
Abstract base classes and protocols « 156

The collections.abc module « 156

X Table of Contents

Creating your own abstract base class « 164

Demystifying the magic « 169

Operator overloadingo i 170
Extending built-ins i e 176
MEtaCIaSSES ..ottt 180
RecCall .. 186
B X OIS S .ottt e e 186
SUIMINATY .o e e e e e e 188
Chapter 7: Python Type Hints 189
Type hints and object-oriented programmingo il 190

Optionality and unions « 191
Overloaded methods « 193
Generic types « 195
Protocols and duck typing « 196
Static checking and linting o i 197
Installing tools « 197
Checking type hints « 198
Comparing tools « 199
Lint checking « 199

Runtime value checking and the Pydantic packagec.c.coioiiiiiii... 200
Recall ... 202
EXEICiSes ... 203
SUIMINATY ..ot et e s 203
Chapter 8: Python Data Structures 205
Tuples and named tuples i 206
Named tuples via typing. NamedTuple « 209
Dataclasseso.iiiiii e 212
Dictionaries and typed dictionaries i 216

Typed dictionaries « 220
Dictionary design choices « 223

Dictionary keys « 224

Table of Contents xi

1 233
Three types of qUEUEsottt e 237
Recall ... 241
EXOrCiSes ..o e 241
SUIMINATY .o e e e e 243

Chapter 9: The Intersection of Object-Oriented and Functional Programming 245

Python built-in functions e 246
The len() function - 246
The reversed() function « 247
The enumerate() function « 248
An alternative to method overloading i 250
Default values for parameters « 252
Additional details on defaults « 255
Variable argument lists « 258
Unpacking arguments « 265
Functions are objects t00ttt e 267
Function objects and callbacks « 269
Using functions to patch a class « 274

Callable objects « 277

RecCall ..o 279
3 (ol 1T 279
SUIMINATY ..o e e i s 280
Chapter 10: The Iterator Pattern 283
Design patterns in brief e 283
L3 1 1 o) PP 284

The iterator protocol « 285

Comprehensionso.iuiniitit it e 288
List comprehensions « 288
Set and dictionary comprehensions « 291

Generator expressions « 293

xii Table of Contents

Generator functions 295
Yielding items from another iterable « 300

Generator stacks - 302

Recall ... 307
EXerCises ... 307
SUMMATY .ot e e e e e e e s 308
Chapter 11: Common Design Patterns 311
The Decorator patternc.iuiiinininiii e 312

A Decorator example « 313
Decorators in Python « 321

The Observer patternc.o.iuiiiininiit et 325
An Observer example « 326

The Strategy Patternc.o.iuiiiii it 331
A Strategy example « 332
Strategy in Python » 335

The Command patternooiiin ittt ettt 336
A Command example « 337

The State pattern 342
A State example « 342
State versus Strategy « 351

The Singleton pattern i 352
Singleton implementation « 353

Recall ... 357

EXerCisSes e 358

SUMMIATY .ottt e e e e e e e 360

Chapter 12: Advanced Design Patterns 361

The Adapter patterno.i.iiiiii it e 362

An Adapter example « 363

The Facade patternot et eenes 367
A Fagade example « 368

The Flyweight patternc.o.iiiii i e 372
A Flyweight example in Python « 374

Table of Contents xiii
Multiple messages in a buffer « 381
Memory optimization via Python’s __slots__ « 383
The Abstract Factory patterno.iuiiiiiiiin ittt 385
An Abstract Factory example « 386
Abstract Factories in Python « 391
The Composite patterno.iuiiinin ittt it 393
A Composite example « 394
The Template patterno. oottt et ieaeaeenes 400
A Template example « 401
Recall ... 405
EXErCiSes ... 406
SUIMINATY .o e e e e e e 407
Chapter 13: Testing Object-Oriented Programs 411
Wy St ? o e 412
Test-driven development « 413
Testing objectives « 414
Testing patterns « 415
Unit testing with unittest 416
Unit testing with pytest e 419
pytest’s setup and teardown functions « 422
pytest fixtures for setup and teardown « 425
More sophisticated fixtures « 429
Skipping tests with pytest « 436
Imitating objects using MOCKSc.ooiiiiiniii e 438
Additional patching techniques « 442
The sentinel object « 445
How much testing is enough? 447
Testing and development 450
Recall ..o e 451
EXerCises ... 452
SUIMMATY ..o e e i i i i e 453
Chapter 14: Concurrency 455

Xiv Table of Contents
Background on concurrent proCessingeiiiiit it 456
Threadsoooii e 458
The many problems with threads « 461
Shared memory « 461
The Global Interpreter Lock (GIL) « 462
Thread overhead « 463
Multiprocessingoouiiiuii i e 464
Multiprocessing pools « 467
Queues « 470
The problems with multiprocessing « 475
Futures 476
ASYNCIO . e e 481
AsynclO in action « 482
Reading an AsynclO future « 484
AsynclO for networking « 485
Design considerations « 491
A log writing demonstration « 492
AsynclO clients « 495
The dining philosophers benchmark 499
Recall .. e 503
EXerCises ... 504
SUIIIMIATY ottt e e e e e 505
Other Books You May Enjoy 509

Index

Preface

The Python programming language is extremely popular and used for a variety of applications.
The Python language is designed to make it relatively easy to create small programs. To create
more sophisticated software, we need to acquire a number of important programming and software

design skills.

This book describes the object-oriented approach to creating programs in Python. It introduces
the terminology of object-oriented programming, demonstrating software design and Python
programming through step-by-step examples. It describes how to make use of inheritance and
composition to build software from individual elements. It shows how to use Python’s built-in
exceptions and data structures, as well as elements of the Python standard library. A number of

common design patterns are described with detailed examples.

This book covers how to write automated tests to confirm that our software works. It also shows
how to use the various concurrency libraries available as part of Python, making effective use of

multiple cores and multiple processors in a modern computer.

Who this book is for

This book targets people who are new to object-oriented programming in Python. It assumes
basic Python skills and familiarity with Python’s tools, including PIP for installing packages.
Starting with the fifth edition, we’re assuming the reader has been through the first 8 sections
of https://docs.python.org/3/tutorial/. For readers with a background in another object-oriented

programming language, this book will expose many distinctive features of Python’s approach.

Because of Python’s use for data science and data analytics, this book touches on a few math and
statistics concepts. Some knowledge in these areas can help to make the applications of the concepts

more concrete.

https://docs.python.org/3/tutorial/

xvi Preface

What this book covers

This book is divided into four overall sections. The first six chapters provide the core principles
and concepts of object-oriented programming and how these are implemented in Python. The next
three chapters take a close look at Python built-in features through the lens of object-oriented
programming. This is followed by three chapters focused on common design patterns and how these

can be handled in Python. The final section covers two additional topics: testing and concurrency.

Chapter 1, introduces the core concepts underlying object-oriented design. This provides a road
map through the ideas of state and behavior, attributes and methods, and how objects are grouped

into classes. This chapter looks at the basic principles of object-oriented design.

Chapter 2, shows how class definitions work in Python. This will include the type annotations,
called type hints, class definitions, modules, and packages. We’ll talk about practical considerations
for class definition and encapsulation. We’ll touch on how to extend Python with additional libraries

and how to manage virtual environments.

Chapter 3, addresses how classes are related to each other. This will include how to make use of
inheritance and multiple inheritance. We’ll look at the concept of polymorphism among the classes

in a class hierarchy. We’ll look closely at how Python’s approach of “duck typing” works.

Chapter 4, looks closely at Python’s exceptions and exception handling. We’ll look at the built-in
exception hierarchy. We’ll also look at how unique exceptions can be defined to reflect a unique

problem domain or application.

Chapter 5, dives more deeply into design techniques. It looks closely at data and behavior and how
these are reflected in class design. This chapter will look at how attributes can be implemented via

Python’s properties.

Chapter 6, is a deep dive into the idea of abstraction, and how Python supports abstract base classes.
This will involve comparing duck typing with more formal methods of Protocol definition. It will
include techniques for overloading Python’s built-in operators. We will also look at metaclasses

and how these can be used to modify class construction.

Chapter 7 examines type hints and how they’re used in object-oriented programming. We’ll look
at tools for validating the type annotations. We’ll look at packages to help with run-time type

checking, also.

Chapter 8, examines a number of Python’s built-in collections. This chapter examines tuples,

dictionaries, lists, and sets. It also looks at how dataclasses and named tuples can simplify a design

Preface xvii

by providing a number of common features of a class.

Chapter 9, looks at Python constructs that aren’t simply class definitions. While all of Python is
object-oriented, function definitions allow us to create callable objects without the clutter of a class

definition. We’ll also look at Python’s context manager construct and the with statement.

Chapter 10, describes the ubiquitous concept of iteration in Python. All the built-in collections are
iterable, and this design pattern is central to a great deal of how Python works. We’ll look at Python

comprehensions and generator functions, also.

Chapter 11, looks at some common object-oriented design patterns. This will include the Decorator,
Observer, Strategy, Command, State, and Singleton patterns.

Chapter 12, looks at some more advanced object-oriented techniques. This will include the Adapter,
Facade, Flyweight, Abstract Factory, Composite, and Template design patterns.

Chapter 13, shows how to use tools like unittest and pytest to provide an automated unit test
suite for a Python application. This will look at some more advanced testing techniques, including
the use of mock objects to isolate the unit under test.

Chapter 14, looks at how we can make effective use of multi-core and multi-processor computer

systems to do computations rapidly. These techniques can help create software that is responsive

to external events. We'll look at threads and multiprocessing, as well as Python’s asyncio module.

To get the most out of this book
All the examples were tested with Python 3.12.5. The pyright tool, version 1.1, was used to confirm

that the type hints were consistent.

Some of the examples depend on an internet connection to gather data. These interactions with

websites generally involve small downloads.

Some of the examples involve packages that are not part of Python’s built-in standard library. In
the relevant chapters, we note the packages and provide the install instructions. All of these extra

packages are in the Python Package Index, at https://pypi.org.

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Python-
Object-Oriented-Programming-5E.

We also have other code bundles from our rich catalog of books and videos available at https:

https://pypi.org
https://github.com/PacktPublishing/Python-Object-Oriented-Programming-5E
https://github.com/PacktPublishing/Python-Object-Oriented-Programming-5E
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

xviii Preface

//github.com/PacktPublishing/ Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You

can download it here: https://static.packt-cdn.com/downloads/9781801077262_ColorImages.pdf

Conventions used
In this book, you will find a number of text styles that distinguish between different kinds of

information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, and user input are shown as follows: “You can confirm Python is running by importing

the antigravity module at the >>> prompt.”

A block of code is set as follows:
class Fizz:

def member(self, v: int) -> bool:
return v % 5 ==

Any Python interactive sessions are written as follows:

[pycon]
>>> import math

>>> math.factorial(52)
80658175170943878571660636856403766975289505440883277824000000000000

Any command-line input or output is written as follows:

python -m pip install tox

New terms and important words are shown in bold.

&

Warnings or important notes appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801077262_ColorImages.pdf%20

Preface Xix

\ Tips and tricks appear like this.

N~
/@

N

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the sub-
ject of your message. If you have questions about any aspect of this book, please email us at

questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this
to us. Please visit http://www.packtpub.com/submit-errata, selecting your book, clicking on the

Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at

copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Share your thoughts

Once you’ve read Python Object-Oriented Programming, Fifth Edition, we’d love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and share

your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
https://packt.link/r/1-801-07726-6

XX Preface

Free Benefits with Your Book

This book comes with free benefits to support your learning. Activate them now for instant access
(see the “How to Unlock” section for instructions). Here’s a quick overview of what you can instantly

unlock with your purchase:

PDF and ePub Copies Next-Gen Web-Based Reader

EPUB !

Free PDF and ePub

versiee Next-Gen Reader

Access a DRM-free PDF copy of
Multi-device progress sync: Pick up

@] this book to read anywhere, on any @)
] where you left off, on any device.
device.
Highlighting and note-taking: Cap-
Use a DRM-free ePub version with
[B tureideas and turn reading into

your favorite e-reader.]
lasting knowledge.

0 Bookmarking: Save and revisit key
sections whenever you need them.
Dark mode: Reduce eye strain by

switching to dark or sepia themes.

Preface xxi

How to Unlock

Scan the QR code (or go to packtpub.com/unlock). Search for this book by name, confirm the
edition, and then follow the steps on the page.

UNLOCK NOW

Note: Keep your invoice handy. Purchases made directly from Packt don’t require one

packtpub.com/unlock

Object-Oriented Design

In software development, design is often considered the step that comes before programming. This
isn’t true; in reality, analysis, programming, and design tend to overlap, combine, and interweave.
Throughout this book, we’ll be covering a mixture of design and programming issues without trying
to parse the two into separate buckets. One of the advantages of a language such as Python is its

ability to express the design clearly.

In this chapter, we will talk a little about how we can move from a good idea toward writing
software. We’ll create some design artifacts — such as diagrams — that can help clarify our thinking

before we start writing code. We’ll cover the following topics:
« What object-oriented means
« The difference between object-oriented design and object-oriented programming
+ Some basic principles of object-oriented design

« Basic Unified Modeling Language (UML) and when it isn’t evil

Technical requirements

The code for this chapter can be found in the PacktPublishing repository:
https://github.com/PacktPublishing/Python-0Object-Oriented-Programming-5E. Within

https://github.com/PacktPublishing/Python-Object-Oriented-Programming-5E

2 Object-Oriented Design

that repository’s files, we’ll focus on the ch_01 directory.

All of the examples were tested with Python 3.12 and 3.13. The uv tool can be used to test the code:

uvx tox.

What object-oriented means

Outside of the world of software, an object is a tangible thing that we can sense, feel, and manipulate.
The earliest objects we interact with are typically baby toys. Wooden blocks, plastic shapes, and
over-sized puzzle pieces are common first objects. Babies learn quickly that certain objects do

certain things: bells ring, buttons are pressed, and levers are pulled.

The definition of an object in software development is not terribly different. Software objects may
not be tangible things that you can pick up, sense, or feel, but they are models of something that
has an internal state, can do certain things, and responds when things are done to it. Formally, an

object is a collection of data and associated behaviors.

Object-oriented programming means writing code directed toward modeling objects. This is one of
many techniques used to describe the actions of complex systems. The overall behavior emerges
from collaboration between objects. A complicated internal state is decomposed into the states of

separate objects.

To do object-oriented programming well, there are some additional disciplines. These include object-
oriented analysis, object-oriented design, and even the combined and streamlined object-oriented
analysis and design. All of these disciplines use the foundational concept of software objects and
their interactions to analyze a problem and design a solution. Object interactions include creating

objects, changing their values, and associating them with other objects.

Analysis, design, and programming are all stages of software development. Calling them object-

oriented clarifies what kind of modeling techniques will be employed.

Object-oriented analysis (OOA) is the process of looking at a problem and identifying the objects
and interactions between those objects. The analysis stage is all about describing what needs to be

done.

The output of the analysis stage is a description of a problem and a solution to the problem, often
in the form of requirements. If we were to complete the analysis stage in one step, we would have
turned a task, I am a botanist and need a website to help users classify plants so I can help with correct

identification, into a set of required features. As an example, here are some requirements for what a

Chapter 1 3

website visitor might need to do. Each item is an action bound to an object; we’ve written them

with italics to highlight the actions, and bold to highlight the objects:
« Browse previous uploads
+ Upload new known examples
« Test for quality
« Browse products
+ See recommendations

In some ways, the term analysis can be a misnomer. A baby interacting with objects doesn’t analyze
the blocks and puzzle pieces. Instead, they explore their environment, manipulate shapes, and
see where they might fit. A better turn of phrase might be object-oriented exploration. In software
development, the initial stages of analysis include exploration: interviewing customers, studying

their processes, and eliminating possibilities that don’t solve the problem.

Object-oriented design (OOD) is the process of converting such requirements into an implementation
specification. The designer must name the objects, define the behaviors, and formally specify which
objects can activate specific behaviors in other objects. The design stage is all about transforming

what should be done into how it should be done.

The output of the design stage is an implementation specification. If we were to complete the
design stage in a single step, we would have turned the requirements into a set of specifications for
object classes. The specification might include state transition diagrams, collaboration diagrams,
activity diagrams, and other useful details to describe state and behavior. These are ready to be

implemented in (ideally) an object-oriented programming language.

Object-oriented programming (OOP) is the process of converting a design into a working program.

This program does what the product owner originally requested during the analysis phase.

It would be lovely if the world met this ideal. If it did, we could follow these stages one by one, in
order, as a well-defined method for producing software. As usual, the real world is much murkier.
No matter how hard we try to separate these stages, we’ll always find things that need further
analysis while we’re designing. When we’re programming, we find features that need clarification

from further design.

Most modern software development practices recognize that a cascade (or waterfall) of stages
doesn’t work out well. What seems to be better is an iterative development model. In iterative

development, a small part of the task is analyzed, designed, and programmed. The developers can be

4 Object-Oriented Design

said to form a scrum (or “scrummage”, as in the game of rugby), where the team members all push in
one direction in concert. The resulting product increment is reviewed. Iterative development uses
repeated cycles of improving existing features and adding new features. The scrum methodology
emphasizes this periodic reset of the team followed by the focused pursuit of a near-term goal.
At some point, the product is usable. Development is never really finished, but at some point it

becomes clear that the cost of making any improvement will outweigh the benefits.

The rest of this book is about OOP. In this chapter, we will cover the basic object-oriented principles
in the context of design. This allows us to understand concepts without having to work through

Python language features at the same time.

Objects and classes

An object is a collection of data that defines an internal state with associated behaviors. How do we
differentiate between categories of objects? Apples and oranges are both objects, but it is a common
adage that they cannot be compared. Apples and oranges aren’t modeled very often in computer

programming, but let’s pretend we’re creating an inventory application for a fruit farm.

One of the earliest things we learn in our analysis is that apples go in barrels and oranges go in
baskets. The problem domain we’ve uncovered so far has four kinds or categories or varieties of
objects: apples, oranges, baskets, and barrels. In object-oriented modeling, the preferred term used

for a kind of object is class. We seem to have four classes of objects.

It’s important to understand the difference between an object and a class. The idea is that objects
can be classified based on common states or behaviors. Classes describe related objects. A class
definition is like a blueprint for creating individual objects. You might have three oranges sitting
on the table in front of you. Each orange is a distinct object, but all three have the attributes and

behaviors associated with one class: the general class of oranges.

The relationship between the four classes of objects in our inventory system can be described using
the Unified Modeling Language (invariably referred to as UML, because three-letter acronyms

never go out of style). Specifically, using a UML class diagram. Figure 1.1is our first class diagram:

Chapter 1 5

!-Orange }—jBasket]

{Apple}—{ Barrel_;

Figure 1.1: Class diagram

This class diagram shows that instances of the Orange class (usually called “oranges”) are somehow
associated with a Basket. It also shows how instances of the Apple class (“apples”) are also
somehow associated with a Barrel. Association is the most basic way for objects (instances of
classes) to be related. By limiting ourselves to vague associations, we’re avoiding assumptions. An
association will often need further clarification. We could, for example, clutter the model with
additional attributes — color, size, or any of a large number of other aspects. The diagram helps

narrow the discussion to fruit categories and containers.

The syntax of a UML diagram is generally pretty obvious; you don’t have to read a tutorial to
(mostly) understand what is going on when you see one. UML is also fairly easy to draw. After all,
many people, when describing classes and their relationships, will naturally draw boxes with lines
between them. Having a standard based on these intuitive diagrams makes it easy for programmers

to communicate with designers, product owners, and each other.

Note that the UML diagram generally depicts the class definitions; we often need to describe
attributes of the objects. UML diagrams can show a class with attributes and methods; it also allows
us to elide details. The diagram shows the class of Apple and the class of Barrel, telling us that
any given apple is in some specific barrel. While we can use UML to depict individual objects,
that’s rarely necessary. Showing the class relationships in a diagram tells us some important details
about the objects that are members of each class. It doesn’t tell us everything; the model serves to

highlight selected details of the overall problem domain.

Some programmers disparage UML as a waste of time. Citing iterative development, they will argue
that formal specifications done up in fancy UML diagrams are going to be redundant before they’re
implemented. Further, they complain that maintaining these formal diagrams will only waste time

and not benefit anyone.

Every programming team consisting of more than one person will occasionally have to sit down
and hash out the details of the components being built. The higher-performing the team — as a

whole — the more often this kind of information is shared. UML is extremely useful for ensuring

6 Object-Oriented Design

quick, easy, and consistent communication. Even those organizations that scoff at formal class

diagrams tend to use some informal version of UML in their design meetings or team discussions.

Furthermore, the most important person you will ever have to communicate with is your future
self. We all think we can remember the design decisions we’ve made, but there will always be Why
did I do that? moments hiding in our future. If we keep the scraps of papers we did our initial

diagramming on, when we started a design, we’ll eventually find them to be a useful reference.

This chapter, however, is not meant to be a tutorial on UML. There are many of those available on
the internet, as well as numerous books on the topic. UML covers far more than class and object
diagrams; it also has a syntax for use cases, deployment, state changes, and activities. We’ll be
dealing with some common class diagram syntax in this discussion of object-oriented design. You
can pick up the structure by example, and then you’ll subconsciously choose the UML-inspired

syntax in your own team or personal design notes.

Our initial diagram, while correct, does not remind us that apples go in barrels or how many barrels
a single apple can go in. It only tells us that apples are somehow associated with barrels. Sometimes
the association between classes is obvious and needs no further explanation. Often, we have to add

further clarification.

The beauty of UML is that most things are optional. We only need to specify as much information
in a diagram as makes sense for the current situation. In a quick whiteboard session, we might just
draw simple lines between boxes. In a more formal, permanent document, we might go into more

detail.

In the case of apples and barrels, we can be fairly confident that the association is many apples go
in one barrel. To make sure nobody confuses the association with one apple spoils one barrel,

we can enhance the diagram.

Figure 1.2 (next page) shows more detail.

| goin \
Orange 1 Basket‘
-
’Ap;:nlej < g 10 1 {Barrel

Figure 1.2: Class diagram with more detail

Chapter 1 7

This diagram tells us that oranges go in baskets, with a little arrow showing what goes in what.
Reading it the other way, a basket contains oranges; this is the foundational “has-a” relationship
that we see almost everywhere. There are numerous other kinds of relationships, but we’ll focus on
this relationship because it’s common and easy to visualize. The diagram also tells us the number
of an object that can be used in the association on both sides of the relationship. One Basket object
can contain many Orange objects, represented by annotating the line with a *. Any one Orange
can go in exactly one Basket. This number is referred to as the multiplicity of the association,
which specifies how many instances of one class can be linked to another. While multiplicity is
sometimes confused with cardinality, the latter defines an exact count of items. In a UML context,
multiplicity is how we define the allowed range of concrete cardinality values. A “more-than-one

instance” feature of a relationship is better described as the multiplicity.

We may sometimes forget which end of the relationship line is supposed to have which multiplicity
annotation. The multiplicity annotation nearest to a class represents how many objects of that class
can be associated with any one object at the other end of the association. For the apple goes in
a barrel association, reading from left to right, many instances of the Apple class (that is, many
Apple objects) can go in any one Barrel object. Reading from right to left, exactly one Barrel can

be associated with any one Apple.

We’ve seen the basics of classes, and how they can specify relationships among objects. Now, we
need to talk about the attributes that define an object’s state, and the behaviors of an object that

may involve state change or interaction with other objects.

Readers with experience in object-oriented design will note that we haven’t described any common
features of the Barrel or Basket classes of objects. We’re intentionally avoiding the search from
common features for a moment. A premature leap into searching for commonality can sometimes

obscure more nuanced distinctions among classes of objects.

Specifying attributes and behaviors

We now have a grasp of some basic object-oriented terminology. Objects are instances of classes
that can be associated with each other. A specific orange on the table in front of us is said to be an
instance of the general class of oranges. As we’ll see in the following sections, the behaviors are

implemented as “methods” of the class, introducing another bit of terminology to the mix.

The orange has a state, for example, ripe or raw; we implement the state of an object via the values

of specific attributes. An orange also has behaviors. By themselves, oranges are generally passive.

8 Object-Oriented Design

State changes are imposed on them. (Consider how alarming an active orange would be.) Let’s dive

into the meaning of those two words, state and behaviors.

Data describes object state

Let’s start with data. Data represents the individual characteristics of a certain object; its current
state. A class defines the characteristics of all objects that are its members. Any specific object can
have different data values for a given characteristic. For example, the three oranges on our table (if
we haven’t eaten any) could each weigh a different amount. The orange class could have a weight
attribute to represent that datum. All instances of the orange class have a weight attribute, but each
orange has a different value for this attribute. Attributes don’t have to be unique, though; any two

oranges may weigh the same amount.

Attributes are frequently referred to as members or properties. Some authors suggest that the
terms have different meanings, usually that attributes are settable, while properties are read-only.
A Python property can be defined as read-only, but the value will be based on attribute values that
are — ultimately — writable, making the concept of read-only rather pointless; throughout this
book, we’ll see the two terms used interchangeably. In addition, as we’ll discuss in Chapter 5, the

property keyword has a special meaning in Python for a particular kind of attribute.

In Python, we can also call an attribute an instance variable. This can help clarify the way
attributes work. They are variables with unique values for each instance of a class. Python has

other kinds of attributes, but we’ll focus on the most common kind to get started.

In our fruit inventory application, the fruit farmer may want to know what orchard the orange
came from, when it was picked, and how much it weighs. They might also want to keep track
of where each Basket is stored. Apples might have a color attribute, and barrels might come in

different sizes.

We’ll often notice that multiple classes have the same properties; we may want to know when apples

are picked, too. For this first example, we’ll add a few different attributes to our class diagram.

Chapter 1 9

Figure 1.3 shows some attributes:

Orange
Gweight | waoin | Basket
+orchard 1 | +location

+date_picked

Apilple »go in | Barrel
Hweight L] asize]

Figure 1.3: Class diagram with attributes

Depending on how detailed our design needs to be, we can also specify the type for each attribute’s
value. In UML, attribute types are often generic names common to many programming languages,
such as integer, floating-point number, string, byte, or Boolean. However, they can also represent
generic collections such as lists, trees, or graphs, or most notably, other, non-generic, application-
specific classes. This is one area where the design stage can overlap with the programming stage.
The various primitives and built-in collections available in one programming language may be

different from what is available in another.

Figure 1.4 shows some attributes with (mostly) Python-specific type hints:

Orange
+weight: float >go in Basket

+orchard: str +location: str
+date_picked: date +oranges: List[Orange}
+basket: Basket -

*
-

Apple

+color: str >goin
+weight: float
+barrel: Barrel

Barrel

+size: int
+apples: List[Apple]

*
-

Figure 1.4: Class diagram with attributes and their types

Usually, we don’t need to be overly concerned with data types at the design stage, as implementation-
specific details are chosen during the programming stage. Generic names are normally sufficient for
design; that’s why we included date as a placeholder for a Python type such as datetime.datetime.
If our design calls for a list container type, Java programmers can choose to use a LinkedList

or an ArraylList when implementing it, while Python programmers (that’s us!) might specify

10 Object-Oriented Design

list[Apple] as a type hint, and use the list type for the implementation.

In our fruit-farming example so far, our attributes are all built-in primitive types. However, there
are some implicit attributes that we can make explicit; these implement the associations. For a given
orange, we have an attribute referring to the basket that holds that orange, the basket attribute,

with a type hint of Basket.

Behaviors are actions

Now that we know how data defines the object’s state, the last undefined term we need to look at is
behavior. Behaviors are actions that can occur on an object. The behaviors that can be performed
on members of a class are expressed as the methods of a class. At the programming level, methods
are essentially functions with access to an object’s attributes — in Python, these are the instance

variables of an object. Like functions, methods can also accept parameters and return values.

A method’s parameters define objects that need to be passed into that method. The actual object
instances that are passed into a method during a specific invocation are referred to as the argument
values. These objects are bound to parameter variable names in the method body. They are used
by the method to perform whatever behavior or task it is meant to do. Returned values are the
results of that task. Internal state changes are a possible side-effect of evaluating a method. (Some

folks like to talk about “calling” a method or “executing” a method; these are all synonyms.)

We’ve stretched our comparing apples and oranges example into a basic (if far-fetched) inventory
application. Let’s stretch it a little further and see whether it breaks. The idea is to capture enough
details of the problem domain; the software we need to write may not implement every detail of
the initial model. One action that can be associated with oranges is the conceptual pick action. As

we think about implementation details for this class, a pick method might need to do two things:
« Place the orange in a basket by updating the Basket attribute of the orange.
+ Add the orange to the Orange list on the given Basket.

So, this pick method may need to know what basket it is dealing with. We do this by giving the
method a Basket parameter. Since our fruit farmer also sells juice, we can add a squeeze method to
the Orange class. When evaluated, the squeeze method might return the amount of juice retrieved,

while also removing the Orange from the Basket it was in.

The class Basket can have a sell action. When a basket is sold, our inventory system might update
some data on as-yet-unspecified objects for accounting and profit calculations. Alternatively, our

basket of oranges might go bad before we can sell them, so we may also need to add a discard

Chapter 1 11

method.

Figure 1.5 adds methods to our diagram:

Orange

+weight: float
+orchard: str

Basket

»goin +location: str

+date_picked: date : 1] toranges: List[Orange}
iodsketiRaseat +sell(customer: Customer) : None
+pick(basket: Basket) : None +discard() : None

+squeeze() : float

Figure 1.5: Class diagram with attributes and methods

Do we really need all of these methods and the related associations? Unsurprisingly, the answer
is often “no”: the application software doesn’t need to model all of these behaviors. For now, we
want to throw ideas at the model to explore what’s possible. Later, we’ll prune this back to what’s

necessary.

Adding attributes and methods to individual objects allows us to create a system of interacting
objects. Each object in the system is a member of a certain class. These classes specify what types
of data the object can hold and what methods can be invoked on it. The data in each object can be
in a different state from other instances of the same class; each object may react to method calls

differently because of the differences in state.

Object-oriented analysis and design are all about figuring out what those objects are and how
they should interact. Each class has responsibilities and collaborations. The next section describes

principles that can be used to make those interactions as intuitive as possible.

Note that selling a basket is not unconditionally a feature of the Basket class. It may be that
some other class (not shown) cares about the various baskets and where they are. We often have
boundaries around our design. We will also have questions about responsibilities allocated to
various classes. The responsibility allocation problem doesn’t always have a tidy technical solution,

forcing us to draw (and redraw) our UML diagrams more than once to examine alternative designs.

In many contexts, the analysis process can also be enlightening for product owners and users.
What may seem — at first — like an insurmountable business problem, requiring lots of expensive
software, may turn out to be a failure of two organizations to collaborate. The process of creating an
object-oriented analytical model may reveal details that aren’t really solvable with more software.
It’s not unusual for a software project to proceed through a great deal of object-oriented model

building, and then end with a successful outcome for the ultimate users, but little or no software

12 Object-Oriented Design

being written. The models (and the resulting insight) were adequate to understand what’s really

going on.

Hiding details and creating the public interface

The key purpose of modeling an object in object-oriented design is to determine what the public
interface of that object will be. The interface is the collection of attributes and methods that other
objects can access to interact with that object. Objects do not need, and in some languages are not

allowed, to access the internal workings of objects of another class.

A common real-world example is the television (or any appliance, really). Our interface to the
television is the remote control. A button on the remote control represents a method that can be
called on the television object. When we, as the calling object, access these methods, we do not
know or care whether the television is getting its signal from a cable connection, a satellite dish, or
an internet-enabled device. The notion here is that “television” is often a complex conglomerate of
components. We don’t care what electronic signals are being sent to adjust the volume, or whether
the sound is destined for speakers or headphones. If we open the television to access its internal
workings, for example, to split the output signal to both external speakers and a set of headphones,

we may void the warranty.

This process of hiding the implementation details of an object is suitably called information
hiding. It is also sometimes referred to as encapsulation. Encapsulated data is not necessarily
hidden. Encapsulation is, literally, creating a capsule (or wrapper) on the attributes. The television’s
external case encapsulates the state and behavior of the television. We have access to the external
screen, the speakers, and the remote. We don’t have direct access to the wiring of the amplifiers or

receivers within the television’s case.

When we buy a component entertainment system, we change the level of encapsulation, exposing
more of the interfaces between components. If we’re an Internet of Things maker, we may decompose

this even further, opening cases and breaking the information hiding attempted by the manufacturer.

The distinction between encapsulation and information hiding is nuanced at the design level. Many
practical references use these terms interchangeably. As Python programmers, we don’t actually
have or need information hiding via completely private, inaccessible variables (we’ll discuss the

reasons for this in Chapter 2), so the more encompassing definition for encapsulation is suitable.

The public interface for a class is very important. It needs to be carefully designed as it can be

difficult to change after software has been written and other classes depend on it. We can change

Chapter 1 13

the internals all we like, for example, to make it more efficient, or to access data over the network
as well as locally, and the client objects will still be able to talk to it, unmodified, using the public
interface. On the other hand, if we alter the interface by changing publicly accessed attribute names
or the order or types of arguments that a method can accept, all client classes will also have to be
modified. When designing public interfaces, keep it simple. Always design the interface of an object
based on how easy it is to use, not how hard it is to code (this advice applies to user interfaces as
well). For this reason, you’ll sometimes see Python variables with a leading _ in their name as a

warning that these aren’t part of the public interface.

Remember, program objects may represent real objects, but that does not make them real objects.
They are models. One of the greatest gifts of modeling is the ability to ignore irrelevant details. The
model car one of the authors built as a child looked like a real 1956 Thunderbird on the outside, but
it obviously didn’t run. When they were too young to drive, these details were overly complex and

irrelevant. The model is an abstraction of a real concept.

Abstraction is another object-oriented term related to encapsulation and information hiding. Ab-
straction means dealing with the level of detail that is most appropriate for a given task. It is the
process of extracting a public interface from the inner details. A car’s driver needs to interact with
the steering, accelerator, and brakes. The workings of the motor, drive train, and brake subsystem
don’t matter to the driver. A mechanic, on the other hand, works at a different level of abstraction,
tuning the engine and bleeding the brakes. Figure 1.6 (next page) shows two abstraction levels for a

car.

Now, we have several new terms that refer to similar concepts. Let’s summarize all this jargon in a
couple of sentences: abstraction is the process of encapsulating information with a separate public
interface. Any private elements can be subject to information hiding. In UML diagrams, we might

use a leading - instead of a leading + to suggest that it’s not part of a public interface.

The important lesson to take away from all these definitions is to make our models understandable
to other objects that have to interact with them. This can mean paying careful attention to small

details.

Ensure methods and properties have sensible names. When analyzing a system, objects typically
represent nouns in the original problem, while methods are normally verbs. Attributes may show

up as adjectives or more nouns. Name your classes, attributes, and methods accordingly.

When designing the interface, imagine you are the object; you want clear definitions of your

responsibilities and you have a very strong preference for privacy to meet those responsibilities.

14 Object-Oriented Design

Car

+brakes
Driver »drives +gas_pedal

— +steer()
+change_gears()

+apply_brake()

Car

+brakes: DiscBrakes
+gas_pedal

+engine: Fuellnjected
+transmission: FiveSpeed

+adjust_brake()
+change_oil()

Mechanic » maintains

Figure 1.6: Abstraction levels for a car

Don’t let other objects have access to data about you unless you feel it is in your best interest for
them to have it. Don’t give other classes an interface to force you to perform a specific task unless

you are certain it’s your responsibility to do that.

Design principles

Object-oriented design isn’t easy. No design is particularly easy. There are a number of guiding
principles that can help make decisions. One of the more famous sets of principles is called SOLID.
This is a handy acronym for five ideas that can help transform a design from a tangle of loose

threads into a tightly knit (and warm) garment.

We'll use these principles throughout the book. This is only a superficial introduction. The five

principles are these:
1. Single Responsibility Principle
2. Open/Closed Principle
3. Liskov Substitution Principle
4. Interface Segregation Principle

5. Dependency Inversion Principle

Chapter 1 15

These principles apply widely in an object-oriented design. We need to note that the Liskov
substitution principle is focused on inheritance and the “is-a” relationship, something we’ve avoided

in the previous examples.

The SOLID ordering is handy for remembering the principles, but it isn’t the most useful way to

understand them. We’ll talk about them in a more practical sequence.

Interface Segregation Principle

We are talking about this principle first because it is essential for understanding the boundaries
around a class definition. When wondering what to encapsulate, it helps to keep the interface
as small as possible. When an object is too complicated, the interface can grow to reflect that
complication, and the collaborating classes are forced to depend on methods and attributes that

they don’t actually need.

The goal, then, is to keep the interface small. This will minimize the intellectual burden of under-
standing the class. It will also ensure that other classes can evolve and change without disastrous

problems stemming from unwanted (or unexpected) dependencies.

Open/Closed Principle

One of the key ingredients in a well-done design is class definitions that are open to extension
but closed to modification. We want to be able to add features to a class using techniques such as
inheritance and composition. We’ll look at these design techniques closely in Chapter 3. We don’t

want to have to “tweak” the implementation code.

One aspect of this principle is relying on compositions of multiple objects to create complex behavior.
This fits with the Interface Segregation Principle by separating features into distinct classes. We
can extend one of those classes without the risk of breaking all the other classes in the application

or library.

The other aspect is to create classes that inherit features from a base class. Via inheritance, the
subclass is usable wherever the base class is expected, but it does something more specialized —
more useful or appropriate — than the base class did. There’s more to this inheritance idea, captured

in the Liskov Substitution Principle.

16 Object-Oriented Design

Liskov Substitution Principle

This principle — named after Barbara Liskov, inventor of the one of the first object-oriented
programming languages, CLU — offers advice to constrain how inheritance is used. We’ll set the

details aside for now to look at the overall goals of well-done design.

If we have a base class, such as Container, we want all of the subclasses, Barrel, Basket, and
anything else we might need to invent, to have the same interface as the base class. They’re all
containers, each with unique implementation details. By having the same interface, any of the

subclasses can be used in place of the base class.

When we’re using tools such as mypy or pyright to check our type annotations, these tools will
warn us of Liskov Substitution problems. The errors will pinpoint the places where a subclass

interface doesn’t match the promise made by the base class. We'll look at this in detail in Chapter 7.

Dependency Inversion Principle

The name for this principle is a little confusing: inverted with respect to what? If we don’t know

what the “right side up” is, how can we judge whether the dependency is “upside down”?

The easy, obvious dependency is to have one class explicitly name a class of objects with which it
collaborates. This is easy and fun for tutorial examples and introductory programming classes. In
the long run, however, when one class directly depends on another class, we have problems with

making changes.

Imagine the Python code for the Apple class that directly names the Barrel class. This turns into
an Open/Closed Principle problem. When we need to start shipping apples in large packing
crates, the new PackingCrate class is an extension to the Barrel class. It was, in turn, an extension
on some abstract base class, Container. We really don’t want to edit a lot of code to add the new

PackingCrate.

The idea of dependency “inversion” tells us that the Apple class should only name the base
Container class. That way, any kind of container in the family tree can be associated with an
Apple instance. The concrete relationship between the Apple class and the Barrel class should be

something configured at runtime; it shouldn’t be defined in the software at its foundation.

The idea of using the base class echoes the Liskov Substitution Principle. It helps implement the
Open/Closed Principle. As we’ll see later, this principle is a kind of implementation detail and

helps make sure that the other principles are followed.

Chapter 1 17

Single Responsibility Principle

This principle, given first, seems like it’s really a summary of the others. A class will have a single
responsibility.

To get to this ideal, we’ll need to start by segregating the interfaces. Once we’'ve decomposed a class
into pieces to simplify the interfaces, we need to make sure to keep the design open to extension

but closed to modification.

After these two initial steps, we need to review the details to make sure that Liskov Substitution will
work. And, of course, we need to avoid “hard-wired” dependencies that require code modifications.
To do this, we need to be flexible, inverting the dependencies so that the code depends only on base

classes.

Once we’ve thought through our design, using these design principles, we’ll find that our classes
have a single, easy-to-summarize responsibility. We can then work on how the objects collaborate

to create the desired software features.

This is — of course — only a sketch of the principles. Each has consequences and considerations

that, well, fill this book.

Collaboration among objects

We've addressed two important ingredients that are part of object-oriented programming: class and
responsibility. We classify objects based on their internal state and their behavior. We also strive to

define a clear, focused responsibility for each class.

The remaining ingredient is collaboration. Once we decompose a problem into separate classes, the
final application’s behavior will emerge from collaboration among objects of those classes. The

final application — like a good sauce — is a blend of ingredients that complement each other.

There are a variety of ways to think about collaboration among classes. We’ll defer the details of
different kinds of collaboration until Chapter 3. Here, we’ll introduce two useful concepts:

« Composition

« Inheritance
When we think about following the Interface Segregation Principle, we often decompose
something complicated into a group of simpler things. In many cases, we can design a model

of the original (complicated) thing as a composition of the simpler things. We’ve already seen

how composition works when talking about cars. A fossil-fueled car is composed of an engine,

18 Object-Oriented Design

transmission, starter, headlights, and windshield, among numerous other parts. Each of these can
be further decomposed into the active, stateful component. The headlight subsystem, for example,
is off, on, or bright. A control changes the state of this system. There may be an automated sensor

to turn lights on at night, and dim the bright lights when there’s oncoming traffic.

Decomposition exposes a potential problem. What if we have several things with common aspects?
We have headlights, interior lights, and an entertainment system, all of which use fuses. Do we
want to repeat the depends on a fuse aspect all over the class hierarchy? That sounds like a lot of

copy-and-pasting, and potential nightmares when there are implementation changes.

To avoid repetition, we can use inheritance. It’s helpful to think of inheritance as an “is a”
relationship. We can extract a feature, such as protected by a fuse. Each of the electrical components
within an automobile is a component protected by a fuse: the headlight system is a component

protected by a fuse; the entertainment system is a component protected by a fuse.

We'll do this be defining a base class: Fused. Then, we’ll define subclasses that extend this base
class. Many folks use the term superclass instead of base class. The UML diagram often shows the
base class at the top of the figure. The class is, however, foundational, and the other classes build

on it.

The Liskov Substitution Principle (and the Open/Closed Principle) provides guidelines for inheri-
tance. We need to be sure that each subclass has the same interface as the base class: the idea is

that any subclass can replace the superclass.

When thinking about headlights and the entertainment system both having fuses, this can seem a
little odd. We don’t turn on the stereo when driving at night. (Well, maybe we do, but it doesn’t

help us see the pavement.)

The subclasses don’t all do the same thing. They merely have a consistent interface. The headlights
and the entertainment system both have an interface (a pair of wires) to the fuse and to the electrical

ground. This interface fits the Liskov Substitution Principle.

When we add running lights to the headlight system, we are consistent with Liskov Substitution
because the running lights use the same fuse. The use of long, flexible wires leaves the car’s
systems open to extension. The use of a tightly sealed headlamp fixture makes the lights closed to
modification: if we want to make a change, we have to replace the whole fixture; we can’t just push

in a new bulb.

Now that we’ve started looking at object-oriented design, we’ll take a quick look at some legacy

Chapter 1 19

software that didn’t follow object-oriented design principles. We can start thinking about ways to

refactor it from a mess of statements to some easier-to-understand class definitions.

A potential mess

It’s common for folks who know some Python but haven’t extensively made use of the OOP features
to wonder whether all the brain-calories that are burned really do lead to better software. We’ll
touch on a few questions (really, objections phrased as a questions) first. Then, we can look at a

concrete example of restating a script as objects.

One common question is: “Isn’t a class just a bunch of functions with shared data?” The short
answer is “yes” The object-oriented feature that’s important here is bundling the data and the
related functions into a single namespace, called a class definition. When we write a batch of closely
related functions, we often give them similar-looking names to be sure that the relationship is

obvious. This is the purpose of a class: it provides a common container name for related functions.

Additionally, a class definition lets us create multiple instances of the shared data. This helps us

encapsulate the processing for multiple objects with similar behavior but distinct states.

Another question is: “Why is a collection of class definitions easier to understand than one long
function?” The short answer is “chunking.” To keep complicated ideas in our heads, we break
things into chunks. For example, we don’t read a long number as a haphazard string of digits; we
decompose it into blocks of digits. This is why we throw punctuation into things such as telephone
numbers. In North America, we write “(111)222-3333” to break a 10-digit phone number into three
small chunks. When we talk about an automobile’s “interior” or “engine,” we’re decomposing the

complicated whole into more intellectually manageable chunks.

Along script or a long function is generally hard to understand. The programmer will often break the
long script into sections using comments. Sometimes, the comments are big billboards announcing
major steps in the processing. Each of these sections could have been a smaller function. Smaller
functions that are closely related often manage the state of a single object; these are methods of a

class.

Reading a big script
Imagine a long Python script that summarizes details from a number of files in JSON format. It
opens files, parses the JSON content, locates the details, and accumulates a summary. It does a lot

of things, and reflects poorly managed complexity. Here’s an outline of the code:

Object-Oriented Design

import json
from pathlib import Path
import shlex

def main():
optional = {"type"}

result_dir = Path.cwd() / "data"
for file in result_dir.glob("*.json"):
1. Load file
result = json.loads(file.read_text())
2. Set Outcome
app_name = file.stem
env_outcome = None
3. Examine environments
for env_name, env in result['testenvs'].items():
2a. Skip special names
if env_name.startswith("."):
continue
2b. Accumulate outcomes
if env:
if env['result']['success']:
if env_outcome is None:
env_outcome = "ok"
else:
for step in env['test']:
if step['retcode'] != 0:
command = Path(step['command'][@]).stem
args = shlex.join(step['command'][1:])
message = f"{env_name} failed {command} {args}"
if env_outcome is None or env_outcome == "ok":
env_outcome = message
else:
env_outcome = f"{env_outcome}, {message}"
else:
if env_outcome is None:
env_outcome = f"{env_name} did not run"
elif env_outcome == "ok" and env_name in optional:
env_outcome = f"ok (except {env_name})"
else:
env_outcome = f"{env_outcome}, {env_name} did not run"
4. Write summary

Chapter 1 21

print(f"{app_name:20s} {env_outcome}")

This script is just shy of 50 lines of code. Within this function, there are numerous shifts in focus:
first the paths, then the JSON document on each path, then the environments that were tested, and
then the commands that were executed. Ultimately, there are some complicated rules that define
a final status that’s printed. These shifts can make sense to the original author, but they are very

hard for anyone else to grasp.
Further, of course, the complexity is quite difficult to test.

Buried in the clutter of processing details are a few essential ideas. This is for a suite of application
instances, where each application is tested with the tox tool. The tool produces the JSON-formatted
files with the details of the test outcomes for each application. (This tool is one of many available in
the PyPI repository that are commonly added to projects to automate testing.) The tool will exercise
each application in a number of environments. Each environment has a number of commands,
using tools such as pytest, pyright, and ruff. An environment can have a result where the success

attribute is true, meaning all the commands worked. Otherwise, at least one command failed.

Note that we started highlighting the key concepts that may need to be implemented as classes
of objects: an application, several environment instances, and several command instances. A
command, for example, has a JSON representation as a list of strings. An environment has a JSON

representation as a simple string, “3.13", with a dictionary of supporting details.

The script dives into details of the file, environment, and command. It’s rare for a script like this to
provide any sort of overview to help clarify the three varieties of outcomes for each application

that’s being tested:
+ All commands in all environments were successful. The application is ready for deployment.
« A command failed in an environment. The application needs debugging.

+ Something else went wrong and there’s no JSON file at all. This also suggests the application
isn’t ready for deployment. Or, it may suggest something else is wrong with the entire test

framework.
We have three classes of objects in the problem domain:

« Anapplication, associated with one or more environments. The application is also associated

with a summary that reduces the environment and command details to a final decision.

22 Object-Oriented Design

« An environment, associated with one or more commands. The environment object will

have a summary of the commands, in the form of a status of success or failure.

« A command, which has details of each step performed. These are mostly interesting when

they record a failure.

When looking at the script, we see a lot of navigation through JSON data structures. While this
is an important implementation detail, it tends to obscure the overall objective of understanding

applications and environments.

Note that it’s common to gloss over some other categories of objects that are part of the implemen-

tation details:
« The Path object with a glob() method to locate all the files
« The dict objects created by the json module
« The list objects that contain the commands within an environment

When programming in Python, it helps to recognize that these implementation classes — the
pathlib.Path, dict, and 1ist classes — are the essence of object-oriented programming. These
are classes we did not write, but we use them to create our applications. It turns out that parts of
any Python script are already object-oriented, even if the script — as a whole — doesn’t seem to

have a robust design.

Revising the script permits us to emphasize the processing of applications, environments, and
commands. You should consider ways to adjust this code to be object-oriented. We won’t dive into
these details. Instead, we’ll look more broadly at the ideas behind refactoring throughout this book.
We’ll end the chapter having exposed the problem and a path toward a solution. There are two

interrelated concepts here:
+ Python is already object-oriented; the built-in types are all based on class definitions

« Good object-oriented design is a shift in focus from implementation details to the concepts

behind the problem being solved

Recall

The following were some key points covered in this chapter:
+ Analyzing problem requirements in an object-oriented context

« How to draw UML diagrams to communicate how the system works

Chapter 1 23

« Discussing object-oriented systems using the correct terminology and jargon

« Understanding the distinction between class, object, attribute, and behavior

Exercises

This is a practical book. As such, we’re not assigning a bunch of fake object-oriented analysis
problems to create designs for you to analyze and design. Instead, we want to give you some ideas
that you can apply to your own projects. If you have previous object-oriented experience, you
won’t need to put much effort into this chapter. However, they are useful mental exercises if you’ve

been using Python for a while, but have never really cared about all that class stuff.

First, think about a recent programming project that you’ve completed. Identify the most prominent
object in the design. Try to think of as many attributes for this object as possible. Did it have the
following: Color? Weight? Size? Profit? Cost? Name? ID number? Price? Style?

Think about the attribute types. Were they primitives or classes? Were some of those attributes
actually behaviors in disguise? Sometimes, what looks like data is actually calculated from other
data on the object, and you can use a method to do those calculations. What other methods or
behaviors did the object have? Which objects called those methods? What kinds of relationships
did they have with this object?

Now, think about an upcoming project. It doesn’t matter what the project is; it might be a fun
free-time project or a multi-million-dollar contract. It doesn’t have to be a complete application; it
could just be one subsystem. Perform a basic object-oriented analysis. Identify the requirements
and the interacting objects. Sketch out a class diagram featuring the highest level of abstraction
on that system. Identify the major interacting objects. Identify minor supporting objects. Go into

detail about the attributes and methods of some of the most interesting ones.

The goal is not to design a system right now (although you’re certainly welcome to do so if
inclination meets both ambition and available time). The goal is to think about object-oriented
design from the perspective of class, responsibility, and collaboration among objects. It can help to
focus on projects that you have worked on, or are expecting to work on in the future; this makes it

less of a hypothetical exercise and more practical.

Lastly, visit your favorite search engine and look up some tutorials on UML. There are dozens,
so find one that suits your preferred method of study. Sketch some class diagrams or a sequence
diagram for the objects you identified earlier. Don’t get too hung up on memorizing the syntax (after

all, if it is important, you can always look it up again); just get a feel for the language. Something

24 Object-Oriented Design

will stay lodged in your brain, and it can make communicating a bit easier if you can quickly sketch

a diagram for your next OOP discussion.

The UML diagrams in this book were prepared with the PlantUML tool. The documentation for this
tool includes numerous example diagrams that can help show how to describe objects and their

relationships. Some people like to use Mermaid (https://mermaid.live/) to create UML diagrams.

Summary

In this chapter, we took a whirlwind tour through the terminology of the object-oriented paradigm,
focusing on object-oriented design. We can separate different objects into a taxonomy of different
classes and describe the attributes and behaviors of those objects via the class interface. Encap-
sulation and information hiding are highly related concepts. Objects can be classified; they have
responsibilities. The behavior of an application — as a whole — emerges from collaboration among

objects. UML syntax can be both a useful and fun method of communication.

In the next chapter, we’ll explore how to implement classes and methods in Python.

https://mermaid.live/

Objects in Python

We have a design in hand and are ready to turn that design into a working program! Of course,

it doesn’t usually happen this way. We’ll be seeing examples and suggestions for good software

design throughout the book, but our focus is on object-oriented programming. So, let’s have a look

at the Python syntax that allows us to create object-oriented software.

After completing this chapter, we will understand the following:

Python’s type hints

Creating classes and instantiating objects in Python

Using composition techniques to create more complicated objects
Organizing classes into packages and modules

Accessing class members wisely, including ways to suggest that collaborating objects don’t

clobber an object’s internal state
Working with third-party packages available from the Python Package Index, PyPI

Managing your virtual environments

26 Objects in Python

Technical requirements

The code for this chapter can be found in the PacktPublishing repository:
https://github.com/PacktPublishing/Python-0Object-Oriented-Programming-5E. Within

that repository’s files, we’ll focus on the ch_02 directory.

This chapter will use the mypy tool, which is installed separately. Commands such as python -m
pip install mypy will install this. If you’re using uv to manage your environment, then uvx tool

install mypy will add mypy.

All of the examples were tested with Python 3.12 and 3.13. The uv tool can be used to test the code:

uvx tox.

Introducing types and classes

Before we can look closely at creating classes, we need to talk a little bit about what a class is and

how to be sure we’re using it correctly. One central idea is everything in Python is an object.

When we write literal values such as “Hello, world!” or 42, we're actually creating objects that
are instances of built-in classes. (Some languages have “primitive types” which aren’t objects;
Python doesn’t have this complication.) We can fire up interactive Python and use the built-in

type() function on the class that defines the properties of these objects:

>>> type("Hello, world!")
<class 'str'>

>>> type(42)
<class 'int'>

The point of object-oriented programming is to solve a problem via a collaboration of objects. When
we write 6 * 7, the multiplication of the two objects is handled by a method of the built-in int

class. For more complex behaviors, we’ll often need to write unique, new classes.
Here are the first two core rules of how Python objects work:

« Everything in Python is an object

« Every object is defined by being an instance of at least one class

These rules have many interesting consequences. A class definition that we write using the class
statement creates a new object of class type. When we create an instance of a class, the resulting

class object will be used to first create and then initialize the instance object being created.

https://github.com/PacktPublishing/Python-Object-Oriented-Programming-5E

Chapter 2 27

What’s the distinction between class and type? The class statement lets us define new types. (Yes,
that is the way it works.) Because the class statement is what we use, we’ll call them classes
throughout the text. See Python objects, types, classes, and instances — a glossary by E11 Bendexsky,
https://eli.thegreenplace.net/2012/03/30/python-objects-types-classes-and-instanc
es-a-glossary,

for this useful quote:
The terms “class” and “type” are an example of two names referring to the same concept.

For type hints, there’s a similar common-usage principle, not as clearly articulated. The terms hints
and annotations are — essentially — the same concept. We’ll often follow common usage and call

the annotations type hints.
There’s another important rule:

« A variable is a reference to an object. Think of a yellow sticky note, with a name scrawled

on it, slapped on a thing.

This doesn’t seem too earth-shattering but it’s actually pretty cool. It means the type information —
what an object is — is defined by the class(es) associated with the object. This type information is
not attached to the variable in any way. This leads to code like the following being both valid and
confusing Python:

>>> a_string_variable = "Hello, world!"
>>> type(a_string_variable)
<class 'str'>

>>> a_string_variable = 42
>>> type(a_string_variable)
<class 'int'>

We created an object using a built-in class, str. We assigned a long name, a_string_variable, to
the object. Then, we created an object using a different built-in class, int. We assigned this new

object the original name.

Figure 2.1 shows two steps, side by side, to illustrate how the variable is moved from object to object:

https://eli.thegreenplace.net/2012/03/30/python-objects-types-classes-and-instances-a-glossary
https://eli.thegreenplace.net/2012/03/30/python-objects-types-classes-and-instances-a-glossary

28

Objects in Python

stepl/

. . A
1 a_stnng_varlableL[
|

step2/

\ a_string_variable L]

1
I
H

H
|

| "Hello, world!" [42 |
id = 140214245924432 id = 140214245924432
type = str type = int
hash = 8275030067265638305 hash = 42

Figure 2.1: Variable names and objects

The various property values are part of the object, not the variable. When we check the type of a
variable with type (), we see the type of the object the variable currently references. A variable
doesn’t have a type of its own;it’s nothing more than a name. This means a function isn’t defined by
the parameter types or the return type; it’s only a name that’s bound to a “callable” object. (Callable
objects include functions and methods of classes, along with a few other things we’ll address in
Chapter 8 and Chapter 11.) Similarly, asking for the id() of a variable shows the ID of the object
the variable refers to. Clearly, the name a_string_variable is a highly misleading if we assign the

name to an integer object.

Further, tools such as mypy and pyright will have trouble working out whether or not the variable

is used properly. Consistency is an important part of clarity.

We’ll show type hints in most of the examples. We’ll defer details on hints and how to check them
until Chapter 7.

If you’ve never seen them before, here’s how type hints look when we write them in a function:

def odd(n: int) -> bool:
return n % 2 !'= 0

The hints suggest the argument value for the n parameter should be an integer. They also suggest

the result will be one of the two values of the bool type.

Chapter 2 29

Annotation syntax is relatively easy to understand. We can follow a variable name with a colon, :,
and a type. We can do this in the parameters to functions (and methods). We can also do this in
assignment statements. Further, when defining functions, we can also add ->type to the definition

to explain the expected return type.

These annotations have no runtime impact. Because Python politely ignores annotations, they’re
optional. People reading your code, however, will be more than delighted to see them. They are a
great way to inform the reader of your intent. You can omit them while you’re learning, but you’ll

love them when you go back to expand something you wrote earlier.

Hint-checking tools such as pyright and mypy can analyze the type hints to locate places where
the hints are not used properly. This is an essential part of the development cycle, as important as
writing test cases. These tools for checking hints are not built into Python, and require a separate
download and install. The more sophisticated Integrated Development Environments (IDEs) include
some type-checking tools. We’ll talk about virtual environments and installation of tools in the

Third Party Libraries section.

For now, it’s helpful to be familiar with the syntax for annotations. Most of the examples in this
book will have type hints because they help make the intent behind the example clear. Now that
we’ve talked about how parameters and attributes are described with type hints, let’s actually build

some classes.

Creating Python classes

We don’t have to write much Python code to realize that Python is a very clean language. When we
want to do something, we can just do it, without having to set up a bunch of prerequisite code. The

ubiquitous hello world in Python, as you’ve likely seen, is only one line.

Similarly, the simplest class in Python 3 looks like this:

class MyFirstClass:
pass

There’s our first object-oriented program! For more information on the syntax, see section 9.3.1
(https://docs.python.org/3/tutorial/classes.html#class-definition-syntax) of the
Python Tutorial.

https://docs.python.org/3/tutorial/classes.html#class-definition-syntax

30 Objects in Python

The class name must follow standard Python variable naming rules: it must start with a letter or
underscore, and can only be comprised of letters, underscores, or numbers. In addition, the Python
style guide PEP 8: (https://peps.python.org/pep-0008/) recommends classes should be named
using what PEP 8 calls CapWords notation: start with a capital letter; any subsequent words should
also start with a capital. Also, in line with the style guide, use four spaces for indentation unless
you have a compelling reason not to (such as fitting in with somebody else’s code that uses tabs for

indents).

Since our first class doesn’t actually add any data or behaviors, we uses the pass statement on the
second line. This is a placeholder to fill the requirement for a class bodys; it indicates that no further

action needs to be taken.

We might think there isn’t much we can do with this most basic class, but it does allow us to
instantiate objects of that class. We can load the class into the Python 3 interpreter, so we can
interactively play with it. To do this, save the class definition mentioned earlier in a file with a

name such as firs_class.py and then run the following command:

% python -i src/first_class.py

The -i argument tells Python to run the code and then drop to the interactive interpreter. The

following interpreter session demonstrates a basic interaction with this class:

>>> a = MyFirstClass()
>>> p = MyFirstClass()
>>> print(a)

<first_class.MyFirstClass object at ...
>>> print(b)
<first_class.MyFirstClass object at ...

This code instantiates two objects from the new class, assigning the object variable names a and b.
Creating an instance of a class is a matter of typing the class name, followed by a pair of parentheses.
It looks much like a function call; calling a class will create a new object. When printed, the two
objects tell us which class they are and what memory address they live at. We've replaced the
two memory addresses with . .. because they’re always different. Generally, they’re hexadecimal
numbers such as 0xb7b7fbac. Memory addresses aren’t used much in Python code, but here, they
demonstrate that there are two distinct objects involved, and they leave at two distinct memory

addresses.

https://peps.python.org/pep-0008/

Chapter 2 31

We can see they’re distinct objects by using the is operator:

>>> g is b

False

This can help reduce confusion when we’ve created a bunch of objects and assigned different

variable names to the objects.

Adding attributes

Now, we have a basic class, but it’s fairly useless. It doesn’t contain any data, and it doesn’t do

anything. What do we have to do to assign an attribute to a given object?

In fact, we don’t have to do anything special in the class definition to be able to add attributes. We

can set arbitrary attributes on an instantiated object using dot notation. Here’s an example:

class Point:

pass
pl = Point()
p2 = Point()
pl.x =5
pl.y = 4
p2.x = 3
p2.y =6
print pl.y)

(pl.x,
print(p2.x, p2.y)
If we run this code, the two print lines at the end tell us the new attribute values on the two objects:

5 4

36

This code created an empty Point class with no data or behaviors. Then, it created two in-
stances of that class and assigns each of those instances x and y coordinates to identify a point
in two dimensions. All we need to do to assign a value to an attribute on an object is use the
<object>.<attribute> = <value> syntax. This is sometimes referred to as dot notation. The
value can be anything: a Python primitive, a built-in data type, or another object. It can even be a

function or another class!

32 Objects in Python

Creating attributes like this can be confusing to people trying to read your code. It also confuses
tools used to inspect code. There’s a much, much better approach to attributes (and their type hints)
that we’ll examine in Initializing the object, later in this chapter. First, though, we’ll add behaviors

to our class definition.

Making it do something
Having objects with attributes is a great start. Object-oriented programming is about the interaction
between objects. We're interested in invoking actions that cause things to happen to those attributes.

We have data; now it’s time to add behaviors to our classes.

Let’s model a couple of actions on our Point class. We can start with a method called reset, which
moves the point to the origin (the origin is the place where x and y are both zero). This is a good

introductory action because it doesn’t require any parameters:

class Point:
def reset(self) -> None:

self.x = 0

self.y = 0
p = Point()
p.reset()

print(p.x, p.y)

This print statement shows us the two zero values of the attributes:

In Python, a method is formatted identically to a function. For more information on the syntax,
see section 9.3.4 (https://docs.python.org/3/tutorial/classes.html#method-objects) of the
Python Tutorial.

The self parameter is essential. We'll discuss that self parameter, sometimes called the instance

variable, in just a moment.

A function that doesn’t return a value explicitly will implicitly return the None object. We formalized

this feature of Python by providing -> None as part of the type annotations for the method.

Next, we’ll look a little more at instance variables and how the self parameter works.

https://docs.python.org/3/tutorial/classes.html#method-objects

Chapter 2 33

Talking about yourself

The one difference, syntactically, between methods of classes and functions outside classes is that
methods have one required argument. This argument is conventionally named self; we've never
seen a Python programmer use any other name for this variable (convention is a very powerful
thing). There’s nothing technically stopping you, however, from calling it this or even Martha, but
it’s best to acknowledge the social pressure of the Python community codified in PEP 8 and stick

with self.

The self argument to a method is a reference to the object that the method is being invoked on.

The object is an instance of a class, and that’s why this is often called the instance variable.

We can access attributes and methods of that object via this variable. This is exactly what we do

inside the reset method when we set the x and y attributes of the self object.

Pay attention to the difference between a class and an object in this discussion. We can think of
the method as a function attached to a class. The self parameter refers to a specific instance of
the class. When you call the method on two different objects, you are passing two different objects

as the self parameter.

Notice that when we call the p.reset () method, we do not explicitly pass the self argument to it.
Python automatically takes care of this part for us. It knows we’re calling a method on the p object,

so it automatically passes that object, p, to the method of the class, Point.

For some, it can help to think of a method as a function that happens to be part of a class. Instead
of calling the method on the object, we could invoke the function as defined in the class, explicitly

passing our object as the self argument:

>>> p = Point()
>>> Point.reset(p) # Works, but...

>>> print(p.x, p.y)
00

The output is the same as in the previous example because, internally, the exact same process has
occurred. We've flagged the line with a comment of works, but. . .; while this works, it’s not the
best practice. While it’s useful in a few cases, we’ve empahsized it because it can help cement an

understanding of the self argument.

What happens if we forget to include the self argument in our class definition? Python will bail

with an error message, as follows:

34 Objects in Python

>>> class Point:
def reset():
pass

>>> p = Point()
>>> p.reset()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Point.reset() takes @ positional arguments but 1 was given

The error message is not as clear as it could be (“Hey, silly, you forgot to define the method with a
self parameter” could be more informative). Just remember that when you see an error message
that indicates missing arguments, the first thing to check is whether you forgot the self parameter

in the method definition.

More arguments
How do we pass multiple arguments to a method? Let’s add a new method that allows us to move a
point to an arbitrary position, not just to the origin. We can also include a method that accepts

another Point object as input and returns the distance between them:

from __future__ import annotations
import math

class Point:
def move(self, x: float, y: float) -> None:
self.x = x
self.y =y

def reset(self) -> None:
self.move(0.0, 0.0)

def calculate_distance(self, other: Point) -> float:
return math.hypot(self.x - other.x, self.y - other.y)

We’ve defined a class with two attributes, x and y, and three separate methods, move(), reset(),

and calculate_distance().

The move () method accepts two arguments, x and y, and sets the relevant attributes of the self

object. The reset() method calls the move () method, since a reset is just a move to a specific

Chapter 2 35

known location.

The calculate_distance() method computes the Euclidean distance between two points. The

distance computation is \/(xs — %,)? + (¥s — ¥,)%, which is the math.hypot () function. In Python

we’ll use self.x, but mathematicians often prefer to write x;.

The type name, Point, for the other parameter, is a reference to the class definition this method is
a portion of. The class isn’t completely defined, and the Point class definition isn’t fully available
inside any of the code inside the Point class. Prior to PEP 749, a string “Point” could be used
to refer to a class that’s not defined yet. With the from __future__ import of the annotations
package, we can include a reference to the Point class without the potentially confusing use of
a string. Starting with Python 3.14, the from _ future__ import will no longer be required to
make kinds of references work as expected. If you haven’t seen it before, the __future__ package
can offer some features before they become a standard part of the language. For now, we’ll use it

heavily.

Here’s an example of using this class definition. This shows how to call a method with arguments:
include the arguments inside the parentheses and use the same dot notation to access the method
name within the instance. We just picked some random positions to test the methods. The test code

calls each method and prints the results on the console:

>>> pointl Point ()
>>> point2 Point ()

pointl.reset()
point2.move(5, 0)
print(point2.calculate_distance(pointl))

assert point2.calculate_distance(pointl) == pointl.calculate_distance(
point2

)
>>> pointl.move(3, 4)
>>> print(pointl.calculate_distance(point2))
4.47213595499958
>>> print(pointl.calculate_distance(pointl))
0.0

The assert statement is a marvelous test tool; the program will bail if the expression after assert

evaluates to False (or zero, empty, or None). In this case, we use it to ensure that the distance is the

36 Objects in Python

same regardless of which point called the other point’s calculate_distance() method. We'll see a

lot more use of assert in Chapter 13, where we’ll write more rigorous tests.

Initializing the object
If we don’t explicitly set the x and y positions on our Point object, either using move or by accessing
them directly, we’ll have a broken Point object with no real position. What will happen when we

try to access it?

Well, let’s just try it and see. Try it and see is an extremely useful tool for Python study. Open up
your interactive interpreter and type away. (Using the interactive prompt is, after all, one of the

tools we used to write this book.)

The following interactive session shows what happens if we try to access a missing attribute:

>>> point = Point()
>>> point.x = 5

>>> print(point.x)
)

>>> print(point.y)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeExrror: 'Point' object has no attribute 'y'

Well, at least it threw a useful exception. We’ll cover exceptions in detail in Chapter 4. You’ve prob-
ably seen them before (especially the ubiquitous SyntaxError, which means you typed something

incorrectly!).

The output is useful for debugging. It tells us the error occurred at line 1, which is only partially
true (in an interactive session, only one statement is executed at a time). If we were running a
script in a file, it would tell us the exact line number, making it easy to find the offending code. In
addition, it tells us that the error is an AttributeError error and gives a helpful message telling us

what that error means.

We can catch and recover from this error, but in this case, it feels like we should have specified some
sort of default value. Perhaps every new object should be reset() by default. Maybe it would be

nice if we could force the user to tell us what those positions should be when they create the object.

Interestingly, annotation-checking tools such as mypy can’t determine whether y was supposed to

be an attribute of a Point object. Attributes are — by definition — dynamic, so there’s no simple list

Chapter 2 37

that’s part of a class definition. However, Python has some widely followed conventions that can

help name the expected set of attributes.

Most object-oriented programming languages have the concept of a constructor, a special method
that creates and initializes the object when it is created. Python is a little different; it has an initializer.
A constructor method, __new__(), is rarely used unless you’re doing something very exotic. We’ll
look at some elements of this lower level of class design in Chapter 6. We'll start our discussion
with the widely-used initialization method, __init__(). This is sometimes called a constructor for

the instance, because it constructs the initial state of the object.

The Python initialization method is the same as any other method, except it has a special name,
__init__. The leading and trailing double underscores mean this is a special method that the

Python interpreter will treat as a special case.

Never name a method of your own with leading and trailing double underscores. It may mean
nothing to Python today, but there’s always the possibility that the designers of Python will add a
function that has a special purpose with that name in the future. When they do, your code will
break.

Let’s add an initialization function on our Point class. This will require the user to supply x and y

coordinates when the Point object is instantiated:

from __future__ import annotations
import math

class Point:
def __init_ (self, x: float, y: float) -> None:
self.move(x, y)

def move(self, x: float, y: float) -> None:
self.x = x

self.y =y

def reset(self) -> None:
self.move (@, 0)

def calculate_distance(self, other: Point) -> float:
return math.hypot(self.x - other.x, self.y - other.y)

Constructing a Point instance now looks like this:

38 Objects in Python

>>> point = Point(3, 5)

>>> print(point.x, point.y)
35

Now, our Point object can never go without both x and y coordinates! If we try to construct a
Point instance without including the proper initialization parameters, it will fail with a TypeExror

exception:

>>> point = Point()
Traceback (most recent call last):

TypeExrror: Point.__init__ () missing 2 required positional arguments: 'x' and

y

Most of the time, we put our initialization statements in the __init__() function. It’s very important
to be sure that all of the attributes are initialized in the __init__() method. Doing this helps
annotation-checking tools such as mypy by providing all of the attributes in one obvious place.
More than that, it helps people reading your code; it saves them from having to read the whole

application to find mysterious attributes set outside the class definition.

While they’re optional, it’s generally helpful to include type annotations on the method parameters
and result values. After each parameter name, we’ve included the expected type of each value. At
the end of the definition, we’ve included the two-character -> operator and the type returned by

the method.

Type hints and defaults
As we’ve noted a few times now, hints are optional. They don’t do anything at runtime. There are
tools, however, that can examine the hints to check for consistency. The mypy and pyright tools

are widely used to check type hints.

If we don’t want to make these two arguments required, we use the syntax Python functions use
to provide default argument values. If the calling object does not provide this argument, then the
default argument is used instead. The variables will still be available to the function, but they will

have the values specified in the argument list. Here’s an example:

Chapter 2 39

class Point:
def __init__ (self, x: float = 0.0, y: float = ©.0) -> None:
self.move(x, y)

The definitions when there are more than two or three parameters can get long, leading to very
long lines of code. In some examples, you’ll see this single logical line of code expanded to multiple
physical lines. This relies on the way Python combines physical lines to match ()s. We might write
this when the line gets long:

class Point:
def __init_ (

self,

x: float = 0.0,

y: float = 0.0
) -> None:

self.move(x, y)

This style isn’t used very often, but it’s valid and keeps the lines shorter and easier to read.

The type hints and defaults are handy, but there’s even more we can do to define a class that’s easy
to use and easy to extend when new requirements arise. We’ll add documentation in the form of

docstrings.

Explaining yourself with docstrings

Python can be an extremely easy-to-read programming language; some might say it is self-
documenting. However, when carrying out object-oriented programming, it is important to write
API documentation that clearly summarizes what each object and method does. Keeping documen-

tation up to date is difficult; the best way to do it is to write it right into our code.

Python supports this through the use of docstrings. Each class, function, or method header can

have a Python string as the first line of the indented suite of statements.

Often, docstrings are quite long and span multiple lines (the style guide suggests that the line length
should not exceed 80 characters). This suggests using multi-line strings, enclosed in matching triple

apostrophe (' ' ') or triple quote (""") characters.

A docstring should summarize the purpose of the class or method it is describing. It should explain

any parameters whose usage is not immediately obvious, and is also a good place to include short

40 Objects in Python

examples of how to use the class. Any caveats or problems an unsuspecting user of the class should
be aware of should also be noted. The interface to a class — the collection of methods and attributes

— needs to be considered as carefully as the responsibilities of the class.

One of the best things to include in a docstring is a concrete example. Tools such as doctest can
locate and confirm that these examples are correct. All the examples in this book are checked with

the doctest tool.

To illustrate the use of docstrings, we will end this section with our completely documented Point

class. We'll break it into two parts; here’s the first:

class Point:

Represents a point in two-dimensional geometric coordinates

>>> p_0 Point ()

>>> p_1 = Point(3, 4)

>>> p_0.calculate_distance(p_1)
5.0

def __init_ (self, x: float = 0.0, y: float = 0.0) -> None:

Initialize the position of a new point. The x and y
coordinates can be specified. If they are not, the
point defaults to the origin.

:param x: float x-coordinate
:param y: float x-coordinate

self.move(x, y)

Here’s the rest of the definition:

def move(self, x: float, y: float) -> None:

Move the point to a new location in 2D space.

:param x: float x-coordinate
:param y: float x-coordinate

self.x = x

Chapter 2

41

def

def

self.y =y

reset(self) -> None:

Reset the point back to the geometric origin: @, 0

self.move(0.0, 0.0)

calculate_distance(self, other: Point) -> float:
Calculate the Euclidean distance from this point
to a second point passed as a parameter.

:param other: Point instance
:return: float distance

return math.hypot(self.x - other.x, self.y - other.y)

Try typing or loading this file (using python -i src/point_4.py) into the interactive interpreter.

Then, enter help(Point) at the Python prompt.

You should see nicely formatted documentation for the class, as shown in the following output. It’s

long, so we’'ve broken into several parts to fit within a book.

Here’s the first part of the help output:

>>> help(Point)

Help on

class Point in module point_4:

<BLANKLINE>
class Point(builtins.object)
Point(x: 'float' = 0.0, y: 'float' = 0.0) -> 'None'

Represents a point in two-dimensional geometric coordinates

>>>
>>>
>>>
5.0

p_0 Point ()
p_1 Point (3, 4)
p_0.calculate_distance(p_1)

Here’s the second part:

42 Objects in Python

Methods defined here:

__init_ (self, x: 'float' = 0.0, y: 'float' = ©0.0) -> 'None'
Initialize the position of a new point. The x and y
coordinates can be specified. If they are not, the
point defaults to the origin.

:param x: float x-coordinate
:param y: float x-coordinate

calculate_distance(self, other: 'Point') -> 'float'
Calculate the Euclidean distance from this point
to a second point passed as a parameter.

:param other: Point instance
:return: float distance

move(self, x: 'float', y: 'float') -> 'None'
Move the point to a new location in 2D space.

:param x: float x-coordinate
:param y: float x-coordinate

reset(self) -> 'None'
Reset the point back to the geometric origin:

Here’s the last bit:
Data descriptors defined here:

|
|
| __dict__

| dictionary for instance variables
|

|

|

__weakref__
list of weak references to the object

Not only is our documentation every bit as polished as the documentation for built-in functions,

but we can run the following command to confirm the example shown in the docstring:

% python -m doctest src/point_4.py

Chapter 2 43

Interestingly, if everything works, there’s no output. By default, the doctest tool only produces

output when a test fails. To see more verbose output, add the -v option.

Further, we can run a type-checking tool such as mypy to check the type hints. Using a command

uch as the following in a terminal window will check all the files in the src folder:

(It’s important to note that this is not a Python statement, used at the Python REPL prompt of »)).
This is an OS command entered in a terminal or command window. We try to use the % prompt

consistently to show this.)

If you’re using uv to manage your environment, then uvx tool run mypy src can be used to run

mypy, leaving the details of downloading and installing the tool to uv.

The code repository for the book includes a pyproject.toml file that provides the mypy options

to exclude two files that show some the known errors that are part of this chapter.

When there are no problems, the output is very short:

% mypy sxc

Success: no issues found in 22 source files

In the next sections, we’ll turn to some additional details of object composition and then we’ll turn

to the idea of encapsulation.

Composition and decomposition

To see composition in action, we’ll look at a few, isolated elements of the design of a chess game.

A game of chess is played between two players, using a chess set featuring a board containing 64
positions in an 8 x 8 grid. The board can have two sets of 16 pieces that can be moved in alternating
turns by the two players in different ways. Each piece can capture other pieces. The board will be

required to draw itself on the computer screen after each turn.

We’ve identified some of the possible objects in the description using italics, and a few key methods
using bold. This is a common first step in turning an object-oriented analysis into a design. At this
point, to emphasize composition, we’ll focus on the board, without worrying too much about the

players or the different types of pieces.

44 Objects in Python

The chess set is composed of a board and 32 pieces. The board further comprises 64 positions. The
positions are commonly identified by file (a-h) and rank (1-8). This means the white king commonly

starts in position “e1”. The black queen starts in position “d8”.

Figure 2.2 s a class diagram showing the Board class as a composition of Position instances.

Board
+positions: dict[tuple(str, int], Position)

1
64

Position

Figure 2.2: Class diagram for a chess board

We’ve omitted any details of the Position class for now.

The Python definitions for these classes might start like this:

class Position:
def _ _init_ (self, file: str, rank: str) -> None:
self.file = file
self.rank = rank

class Board:
def __init_ (self) -> None:
self.positions: dict[tuple[str, str], Position] = {}
for file in ('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'):
for rank in ('1', '2', '3', '4', '5', '6', '7', '8'):
self.positions[file, rank] = Position(file, rank)

The __init__() method created the 64 Position objects and assigned them to the Board object.

Note that we’re using string values for the ranks, not numbers. This makes it very slightly easier to

create a string describing a position on the board.

We have to observe an important shift of focus here. In a very technical sense, the Board is composed
of one thing, a dictionary. The dictionary is composed of 64 Position objects. (And, don’t forget,

64 two-tuples with the rank-file strings for the dictionary.) There’s a lot of composition going on in

Chapter 2 45

this seemingly simple composite object: dictionaries, strings, and Position instances.
We have two levels of detail:

+ The implementation details involving dict and stxr

« The problem domain, which is a Board and Position instances

It’s common to take a step back from the implementation details. We want to leave some room for
the possibility of changing the implementation to use integer rank numbers. We might want have
the board composed of a list of eight objects, one for each file. Each file would be a list of eight

Position objects.

The idea that a Board is composed of Position instances is essential for clear communication
about the software being designed. The implementation details of the dictionary or list-of-lists
are less important. In some cases, we may need to provide both diagrams. Often, we’ll omit the

implementation details.

What happens when the Board object is no longer being used? What about the Position objects
associated with the board? When the Board is no longer in use, all 64 Position objects are likewise
no longer needed. This is the “a composite controls the composition” rule. There’s an alternative to

composition, called aggregation.

Figure 2.3looks at an expanded version of the chess game. This diagram includes the pieces.

Board
+positions: dict[tuple[str, int], Position)
)

1
64

Position \

+file: str
+rank: str
+piece: Piece

0,1
0,1

Piece

+name: str

Figure 2.3: Class diagram for a chess board and pieces

46 Objects in Python

Notice that we’ve introduced a new arrow-head style at the end of the association: an open diamond.
The Board is composition of Position objects, with a filled-in diamond. A Piece is an aggregate
object that may have a Position associated with it. (After a piece is captured, it will not have a

position. Also, when a piece is moved, it leaves one position and arrives at another.)

The open diamond for an aggregation tells the reader that a Piece and Position can exist indepen-
dently of each other. If we remove a Piece from play (because it’s captured) the Position continues

to exist. The Position remains as part of the Board composition.

The Boaxrd, on the other hand, must be composed of Position objects; a Position must be part of

a Board. This relationship is essential.

In practice, the distinction between aggregation and composition is often irrelevant past the design
stage. In a relational database, for example, there are explicit deletes as well as an explicit “cascading
delete” relationship; the distinction between composition and aggregation becomes part of the SQL
code. When implemented in Python, however, both composition and aggregation look the same.

This is because object deletion happens automatically in Python.

An important part of object composition is how the objects collaborate. A very important part
of this is having clear definitions of responsibility. This means keeping information encapsulated

within a class, something we’ll look at next.

Who can access my data?

Object-oriented programming languages have a concept of access control. This is related to the
concept of encapsulation. Some languages have a spectrum of access controls including private,

protected, public, and final.

Python doesn’t do this. Instead, Python is kept very simple, and provides some guidelines and best
practices. All methods and attributes on a class are publicly available. We often remind each other
of this by saying “We’re all adults here” There’s no need to declare a variable as private or protected

when we can all see the source code.

If we want to suggest that a method should not be used publicly, we really need to put a note
in docstrings indicating that the method is meant for internal use only. Ideally, we include an
explanation of how the public-facing API works. We often supplement this with examples copied

and pasted from REPL interaction; examples that can be tested by the doctest module.

Chapter 2 47

By convention, we prefix a non-public attribute or method with an underscore character, _. Python
programmers will understand a leading underscore name to mean this is an internal variable, think
three times before accessing it directly. But there is nothing inside the interpreter to stop them from
accessing it if they think it is in their best interest to do so. It’s a pretty clear warning sign to avoid

using it. Most lint-checking tools will warn us when we use a non-public attribute or method.

There’s another thing available to strongly suggest that outside objects don’t access a property or
method: prefix it with a double underscore, __. This will perform name mangling on the attribute
in question. In essence, name mangling means that the method can still be called by outside objects
if they really want to do so, but it requires extra work and is a strong indicator that you demand

that your attribute remains private.

The mangling process isn’t too complicated. The attribute’s name is (secretly) prefixed with
_<classname>. When methods inside the class internally access the attribute, the references are
consistently mangled. When external classes wish to access this attribute, the attribute name isn’t
mangled, and the author of the external class has to mangle the name manually. Name mangling
does not guarantee privacy; it only strongly recommends it. This is very rarely used, and is often a

source of confusion when it is used.

Don’t fret over other language’s complicated rules for public, protected, private,

and final attributes.

N Don’t use double-underscore names in your own code, it will only cause grief and

= heartache.

Use non-public (single-underscore) names to mark implementation details and

features subject to change.

What’s important is that encapsulation — as a design principle — assures that the methods of a
class encapsulate the state changes for the attributes. Whether or not attributes (or methods) are

private doesn’t change the essential good design that flows from encapsulation.

The encapsulation principle applies to individual classes as well as a module with a bunch of classes.
It also applies to a package with a bunch of modules. As designers of object-oriented Python,we’re

isolating responsibilities and clearly encapsulating features.

Classes are not the only kind of organization for our code. We also have modules and packages,

something we’ll look at next.

48 Objects in Python

Modules and packages

Now we know how to create classes and instantiate objects. You don’t need to write too many
classes (or non-object-oriented code, for that matter) before you start to lose track of them. For
small programs, we generally put all our classes into one file and add a little script at the end of the
file to start them interacting. However, as our projects grow, it can become difficult to find the one
class that needs to be edited among the many classes we’ve defined. This is where modules come
in. Modules are Python files, nothing more. The single file in our small program is a module. Two
Python files are two modules. If we have two files in the same folder, we can load a class from one

module for use in the other module.

The Python module name is the file path’s stem; the name without the .py suffix. A file with the
name model.py is a module named model. Module files are found by searching paths that includes

the local directory, the installed packages, and the standard library.

The import statement is used for importing modules or specific classes or functions from modules.
We’ve already seen an example of this in our Point class in the previous section. We used the
import statement to get Python’s built-in math module and use its hypot () function in the distance

calculation.
There are several variations on the import statement syntax that can be used to access parts of a

module. One variant is to import the module as a whole:

impoxrt random

def dicel() -> tuple[int, int]:
return (
random.randint (1, 6), random.randint(1l, 6)

This version imports the random module, creating a random namespace. All classes or functions in

the random module are accessed using the random. something notation.

Alternatively, we can import just the one class we need using the from. . .import syntax:

from random import randint

def dice2() -> tuple[int, int]:
return (
randint(1, 6), randint(1, 6)

Chapter 2 49

This version imported only the randint () function from the random module. When we have a few
items from a few modules, this can be a helpful simplification to avoid using longer, fully qualified
names such as random.randint. When we import a number of items from a array of different
modules, this can be a potential source of confusion because we can omit the qualifiers that show

where a object originated.

If, for some reason, our application already has a class called randint, and we don’t want the two

names to be confused, we can rename the object during import:

from random import randint as rng

def dice3() -> tuple[int, int]:
return (
rng(l, 6), rng(l, 6)

We can also import multiple items in one statement. If we need the Random class as well as the

seed() function from the random module, we can import both objects using the following code:

from random import seed, Random

We can import all classes and functions from the random module using this syntax:

from random import *

While this works, don’t do this. Most experienced Python programmers will tell you that you
should never use this syntax (a few will tell you there are some very specific situations where it is
useful, but we can disagree). Most tools that look for those lint-like bits of fuzz in your code that
might catch fire (tools such as ruff) will warn you against this. One way to learn why to avoid this
syntax is to use it and try to understand your code two years later. We can save some time — and

two years of poorly written code — with a quick explanation now!
We’ve got several reasons for avoiding the from X import * syntax:

« When we explicitly import the random class at the top of our file using from random import
randint, we can easily see where the randint function comes from. We might use r =
randint(1, 100) 400 lines later in the file, and we can quickly look at the imports to see

where that randint function came from. Then, if we need clarification as to how to use the

50 Objects in Python

randint class, we can visit the original module. However, if we use the from random import
* syntax, it takes a lot longer to find where that function was defined. Code maintenance

becomes a nightmare.

« If there are conflicting names, we’re doomed. Let’s say we have two modules, both of which
provide a class named Random. Using from random import *and from my_module import
* means the second import statement can provide definitions that overwrite objects created
by the first import. If we used import random and import my_module, we must then use the

module names as qualifiers to disambiguate random.Random from my_module .Random.

« In addition, most code editors are able to provide extra functionality, such as reliable code
completion, the ability to jump to the definition of a class, or inline documentation, if specific
names are imported. However, the import * syntax can hamper their ability to do this

reliably.

« Finally, using the from X import * syntax can bring unexpected objects into our local
namespace. Sure, it will import all the classes and functions defined in the module being
imported from, but unless a special __all__ list is provided in the module, this import
will also import any classes or modules that were themselves imported by that file! This
surprise collection of other dependencies might be surprising because it’s far from clear in

our application’s code.

Every name used in a module should come from a well-specified place, whether it is defined in that
module, or explicitly imported from another module. There should be no magic variables that seem
to come out of thin air. We should always be able to immediately identify where the names in our
current namespace originated. We promise that if you use this evil syntax, you will one day have

extremely frustrating moments of where on earth can this class be coming from?

For fun, try typing import this into your interactive interpreter. It prints a nice poem (with a
couple of inside jokes) summarizing some of the idioms that Pythonistas tend to practice. Specific
to this discussion, note the line “Explicit is better than implicit.” Explicitly importing names into
your namespace makes your code much easier to navigate than the implicit from module import

* syntax.

While many, many applications are created with a flat collection of modules, this doesn’t always

work out. In the next few sections, we’ll look at how to organize modules into packages.

Chapter 2 51

Organizing modules

As a project grows into a collection of more and more modules, we may find that we want to add
another level of abstraction, some kind of nested hierarchy on our modules. However, we can’t put

modules inside modules; one file can hold only one file after all, and modules are just files.

Files, however, can go in directories, and so can modules. A package is a collection of modules in a
directory. The name of the package is the name of the folder. We need to tell Python that a folder is
a package to distinguish it from other directories in the project. To do this, place a (normally empty)
file in the folder named __init__.py. If we forget this file, we won’t be able to import modules

from that folder.

Let’s start with a fresh example, an e-commerce application. This has a number of components,

and it makes sense to put the modules into packages to permit expansion of the available features.

We'll put the overall ecommerce package in our project folder. This will also contain a main.py
file to start the program. Let’s additionally add another package inside the ecommerce package for

various payment options.

We need to exercise some caution in creating deeply nested packages. The general advice in the
Python community is “flat is better than nested.” In this example, we need to create a nested package

because there are some common features to all of the various payment alternatives.

The folder hierarchy will look like this, rooted under a directory in the project folder, commonly

named sxc:

src/
+-- main.py
+-- ecommerce/
+-- __init__.py
+-- database.py
+-- products.py
+-- vendors.py
+-- payments/
| +-- __init__.py
| +-- common.py
| +-- square.py
| +-- stripe.py
+-- contact/
+-- __init__.py
+-- email.py

52 Objects in Python

The src directory will be part of an overall project directory. In addition to src, the project will
often have directories with names like docs and tests. It’s common for the project parent directory
to also have configuration files for tools such as tox and pytest among others. We’'ll return to this

in Chapter 13.

In Python, there are two ways of importing modules: absolute imports and relative imports. If our
packages have deeply-nested sub-packages, absolute imports can become lengthy. One common

way to avoid this is to switch to a flatter design. We’ll look at each import variant separately.

Absolute imports
Absolute imports specify a complete path to the module we want to import. If we need access to
a Product class inside the products module inside the ecommerce package, we could use any of the

following syntaxes to perform an absolute import:

import ecommerce.products

product_1 = ecommexrce.products.Product("fore")

Or, we could specifically import a single class definition from the module within a package:

from ecommerce.products import Product

product_2 = Product("main")

Or, we could import an entire module from the containing package:

from ecommerce import products

product_3 = products.Product("mizzen")

The import statements use the period operator to separate packages or modules. A package is a
namespace that contains module names, much in the way an object is a namespace containing

attribute names.

These statements will work from any module. We could instantiate a Product class using this
syntax in main.py, in the database module, or in either of the two payment modules. The other
part of this is making sure the packages are available to Python. For example, the packages can

also be installed in the Python site-packages directory; or the PYTHONPATH environment variable

Chapter 2 53

could be set to tell Python which additional folders to search for packages and modules it is going

to import.

With these choices, which syntax do we choose? It depends on your audience and the application at
hand. If there are dozens of classes and functions inside the products module that we want to use,
we’d generally import the module name using the from ecommerce import products syntax, and
then access the individual classes using products.Product. If we only need one or two classes from
the products module, we can import them directly using the from ecommerce.products import
Product syntax. It’s important to write whatever makes the code easiest for others to read and

extend.

Relative imports

When working with related modules inside a deeply nested package, it seems kind of redundant to
specify the full path. This is where relative imports come in. Relative imports identify a module as
it is positioned relative to the current module. They only make sense inside modules, and, further,

they only make sense where there’s a complicated package structure.

For example, if we are working in the products module and we want to import the Database class

from the database module next to it, we could use a relative import:

from .database import Database

The period before database says use the database module inside the current package. In this case,
the current package is the package containing the products.py file we are currently editing, that is,

the ecommerce package. The products and database modules are side-by-side peers.

If we were editing the stripe module inside the ecommerce.payments package, we would want, for
example, to use the database package inside the parent package instead. This is easily done with two

periods, as shown here:
from ..database import Database
We can use more periods to go further up the hierarchy, but at some point, we have to acknowledge

that we have too many packages. Too much navigation suggests a flatter design would be more

clear.

54 Objects in Python

Of course, we can also go down one side and back up the other. The following would be a valid
import from the ecommerce.contact package containing an email module if we wanted to import

the send_mail function into our payments.stripe module:

from ..contact.email import send_mail

This import uses two periods indicating the parent of the payments.stripe package, and then uses
the normal package.module syntax to go back down into the contact package to name the email

module. It can be difficult to visualize the package structure required for this to work.

Relative imports aren’t as useful as they might seem. As mentioned earlier, the Zen of Python (you
can read it when you run import this) suggests “flat is better than nested”. Python’s standard
library is relatively flat, with few packages and even fewer nested packages. If you're familiar with

Java, the packages are deeply nested, something the Python community likes to avoid.

Packages as a whole

We can import code that appears to come directly from a package, as opposed to a module inside
a package. As we’ll see, there is a module involved,but it has a special name, so it’s hidden. In
this example, we have an ecommerce package containing two module files named database.py and
products.py. The database module contains a db variable that is accessed from a lot of places.
Wouldn'’t it be convenient if this could be imported as from ecommerce import db instead of from

ecommerce.database import db?

Remember the __init__.py file that defines a directory as a package? This file can contain any
variable or class declarations we like, and they will be available as part of the package. In our

example, if the ecommexrce/__init__.py file contained the following line:

from .database import db

We could then access the db attribute in a module such as main.py or any other file using the

following import:

from ecommerce import db

It might help to think of the ecommerce/__init__.py file as if it were some kind ecommerce. py file.

It lets us view the ecommerce package as having a module protocol as well as a package protocol.

Chapter 2 55

This can also be useful if you put all your code in a single module and later decide to break it up
into a package of modules. The __init__.py file for the new package can still be the main point of
contact for other modules using it, but the code can be internally organized into several different

modules or subpackages.

We recommend not putting much code in an __init__.py file, though. Programmers do not expect
actual definitions to be placed in this file. It becomes like a from x import *: it can trip readers up
if they are looking for the declaration of a particular piece of code and can’t find it until they check

__init__.py.

It’s important to avoid complicated dependencies among modules. if module C requires some
functions from module F and module F requires some class definitions from module C, there’s a
problem. Modules can’t have a mutual (or circular) relationship. The dependencies must be direct;
an import statement must be able to read — and execute the definitions — from the module it names.

In some cases, it can help to keep the number of modules very small to avoid tangled dependencies.

After looking at modules in general, let’s dive into what should be inside a module. The rules
are flexible. Python gives you some freedom to bundle things in a way that’s meaningful and

informative.

Organizing our code in modules

The Python module is an important focus for organizing our code. Every application or library is at
least one module. Even a seemingly “simple” Python script is a module. Inside any one module, we
can specify all the relevant variables, classes, or functions. Some languages encourage (or require)

one class per file; this isn’t true in Python.

A module-level global can be a handy way to store state without namespace conflicts. For example,
we have been importing the Database class into various modules and then instantiating it, but it
might make more sense to have only one database object globally available from the database

module. The database module might look like this:

class Database:
"""The Database Implementation"""
def __init_ (self, connection: str | None = None) -> None:
"""Create a connection to a database."""
pass

56 Objects in Python

database = Database("file:/path/to/database")

Then we can use any of the import methods we’ve discussed to access the database object. In the

products.py module, for example, we might use this:

import ecommerce.database as database

A problem with the preceding definition of the database module is that a database object is created
immediately when the module is first imported, which is usually when the program starts up.
This isn’t always ideal, since connecting to a database can take a while, slowing down startup.
More important than that, the database connection information may not yet be available because
we need to read a configuration file or parse command-line parameters or decode environment
variables (or all three!) We could delay creating the database until it is actually needed by using an

initialize_database() function to set the value of a module-level variable:

db: Database | None = None

def initialize_database(connection: str | None = None) -> None:
global db
if not db:
db = Database(connection)

The Database | None type hint signals this may be None or it may have an instance of the Database

class.

The global keyword tells Python that the database variable inside initialize_database() is the
module-level variable; it exists outside the function. If we had not specified the variable as global,
Python would have created a new local variable that would be discarded when the function exits,

leaving the module-level value unchanged.

We need to make one additional change. We need to import the database module as a whole. In
order to use this, we can’t import the db object from inside the module and use it; it might not
have been initialized. We need to be sure the database.initialize_database() function is called
before the db will have a meaningful value. It’s important that some class have responsibility for this
so that the database connection is initialized properly. When we need direct access to the database

object, we’d use database. db to be sure we're talking about the db variable in the database module.

Chapter 2 57

A common alternative is a function that returns the current database object. We could import this

function everywhere we needed access to the database:

def get_database(connection: str | None = None) -> Database:
global db
if not db:
db = Database(connection)
return db

We’d change our imports to fetch this get_database() function instead of the module-level db
object. We can imagine a function as an API for a module. It’s similar to the way a method is the
API for a class. The difference is that there’s only a single instance of a module, where many objects

can be created that all have a common class.

As these examples illustrate, all module-level code is executed immediately at the time it is imported.
Executing the class and def statements creates code objects to be used later. This is our general

expectation, when importing a module: it will execute class and def statements.

We can get ourselves in trouble working with script files. Imagine, for a moment, that we once
wrote a script or an application that does something useful. It runs via a command such as python
my_script.py. Now, after using it for a while, we want to import one function or class from that
module into a different program. However, as soon as Python executes a statement such as import
my_script it, any code at the module level of the my_script script file is immediately executed. We
can end up running the first program when we really only meant to access a couple of functions

inside that module.

To solve this, we should always put the code for even the simplest script in a function (conventionally,
called main()). Then, the module can be set up to only execute the main() function when we know
we are running the module as a script. We can be sure the code will not run when our module is
being imported. We can do this by guarding the call to the main() function inside a conditional

statement, demonstrated as follows:

def main() -> None:

Does the useful work.

>>> main()
pl.calculate_distance(p2)=5.0

58 Objects in Python

pl = Point()
p2 = Point(3, 4)
print(f"{pl.calculate_distance(p2)=}")

if __name__ == "__main__":
main()

We can import the contents of this module without any surprising processing happening. The
Point class (and the main() function) can be reused without worry. At import time, the value of

the __name__ variable is the module name.

When run as a main program, the value of the __name__ variable is “__main__". This means the
module will behave like a script and execute everything in the body of the if statement. In this

example, it’s the main() function.

Make it a policy to write all scripts as functions, with the function evaluated in

\

" n

an if _ _name__ == “__main__":

! 7/
(m@
AY

suite of statements. This makes testing much

/

easier. And, it makes reuse much easier.

So, methods go in classes, which go in modules, which go in packages. Is that all there is to it?

Actually, no. This is the typical order of things in a Python program, but it’s not the only possible
layout. Classes can be defined anywhere. They are typically defined at the module level, but they

can also be defined inside a function or method, like this:

class Formatter:
def format(self, string: str) -> str:
return string

def format_string(string: str, formatter: Formatter | None = None) -> str:
Format a string using the formatter object, which
is expected to have a format() method that accepts
a string.

Chapter 2 59

class DefaultFormatter(Formatter):
"""Format a string in title case."""

def format(self, string: str) -> str:
return str(string).title()

if not formatter:
formatter = DefaultFormattexr()

return formatter.format(string)

We’ve defined a Formatter class as an abstraction to explain what a formatter class needs to have.
We haven’t used the abstract base class (abc) definitions (we’ll look at these in detail in Chapter 6).
Instead, we’'ve provided a method with no useful body. It has a full suite of type hints, to make sure

type-checking tools have a formal definition of our intent.

Within the format_string() function, we created an internal class that is an extension of the
Formatter class. This formalizes the expectation that our class inside the function has a specific
set of methods. This connection between the definition of the Formatter class, the formatter
parameter, and the concrete definition of the DefaultFormatter class assures us that we haven’t

accidentally forgotten something or added something.

We can execute this function like this:

>>> hello_string = "hello world, how are you today?"
>>> print(f" input: {hello_string}")

input: hello world, how are you today?
>>> print(f"output: {format_string(hello_string)}")
output: Hello World, How Are You Today?

If no Formatter instance is supplied, the function creates a new Formatter subclass of its own as
a local class and instantiates it. Since the Formatter subclass is created inside the scope of the

function, this class cannot be accessed from anywhere outside of that function.

We can define a class in a function or a class. Similarly, functions can be defined inside a function,

class, or a class method. In general, any Python statement can be executed at any time.

Common practice (enshrined in PEP-8) suggests all of the import statements be collected near the

beginning of a module. They can be provided anywhere, but why have to search for them?

60 Objects in Python

These inner classes and functions are occasionally useful for one-off items that don’t require or
deserve their own scope at the module level, or only make sense inside a single method. However,
it is not common to see Python code that frequently uses this technique. We want to make our code

clear and easy to follow; the general advice remains “flat is better than nested”

We’ve seen how to create classes and how to create modules. With these core techniques, we can
start thinking about writing useful, helpful software to solve problems. When the application or
service gets big, though, we often have boundary issues. We need to be sure that objects respect each
other’s privacy and avoid confusing entanglements that make complex software into a spaghetti

bowl of interrelationships. We’d prefer each class to be a nicely encapsulated ravioli.

And, of course, we're using Python to solve problems. It turns out there’s a huge standard library
available to help us create useful software. The vast standard library is why we describe Python as
a “batteries included” language. Right out of the box, you have almost everything you need, no

running to the store to buy batteries.

Outside the standard library, there’s an even larger universe of third-party packages. In the next

section, we’ll look at how we extend our Python installation with even more ready-made goodness.

Third-party libraries and virtual environments

Python ships with a lovely standard library, which is a collection of packages and modules that
are available on every machine that runs Python. However, you’ll soon find that it doesn’t contain

everything you need. When this happens, you have two options:
+ Write a supporting library yourself
« Use somebody else’s code, a third-party library

We won’t be covering the details about turning your packages into libraries. If you have a problem
you need to solve and you don’t feel like coding it (the best programmers are extremely lazy and
prefer to reuse existing, proven code, rather than write their own), you can probably find the library
you want on the Python Package Index (PyPI) at https://pypi.python.org/. Once you've

identified a package that you want to install, you can use a tool called pip to install it.

You can install packages using an operating system command such as the following:

% python -m pip install mypy

If you try this without making any preparation, you may get an error that you don’t have permission

https://pypi.python.org/

Chapter 2 61

to update the Python installation you’re using. This can happen in the cases where a Python
interpreter is part of the operating system, or was installed by someone who as administrative
privileges. Generally, we don’t want to haphazardly install (and uninstall) packages. We generally

need to take a disciplined approach and keep track of what packages we’ve added.

The common consensus in the Python community is to avoid any Python that’s part of the OS. We
should not tinker with these installations. Some Linux distributions can include Python. Older
releases of macOS included Python. It’s best to ignore these, and always install a fresh, new Python

that’s under our control.

We need to take one more step. We need to set up a virtual environment to manage the packages
for a given project. (It’s really unlikely that you’ll only work on one — and only one — programming
project.)

Python ships with a tool called venv, a utility that creates virtual environments. The environment,
defined by the OS, is the collection of files and environment variables, set when you log in or open
a terminal window. A virtual environment is an extension to the OS-defined environment. The idea

is to activate and deactivate virtual environments to manage the mix of Python libraries.

When you activate a virtual environment, commands related to Python will work with the ac-
tive virtual environment’s Python. Changes to this environment are isolated from other virtual

environments. Here’s how to use it on most OSes:

% cd project_directory

% python -m venv env
% source env/bin/activate

This creates an environment with the unimaginative name of env. The source command updates

the OS environment with the settings from the virtual environment, env, being activated.

Here’s the slight variation for Windows:

> cd project_directory

> python -m venv env
> env/Scripts/activate

(For other OSes, see https://docs.python.org/3/1ibrary/venv.html, which has all the variations

required to activate the environment.)

Once a virtual environment is activated, you are assured that python -m pip will install new

https://docs.python.org/3/library/venv.html

62 Objects in Python

packages into the active virtual environment. There’s a small (but very real) possibility that a
command such as pip could be bound to a virtual environment that’s not the active one. (This often
happens when creating a new environment and not deactivating the old environment.) For this

reason, we strongly encourage using python -m pip to focus on the active virtual environment.

On a home computer — where you have access to the privileged files — you can
sometimes get away with installing and working with a single, centralized system-
wide Python. In this case, there’s one environment — the OS environment — which
is the one-and-only environment. Experimentation with different libraries can
be difficult. Multiple projects with different requirements will become annoying.

Tracking changes to dependencies may become nearly impossible.

H In an enterprise computing environment, where multiple people share a server,
and system-wide directories require special privileges, a virtual environment is
required. The alternative to a virtual environment would be one OS environment
shared by all users. This means negotiating with the administrators (and all the

other users) to upgrade a Python library.

Virtual environments are essential.

It’s typical to create a distinct virtual environment for each Python project. You can store your
virtual environments anywhere, but a good practice is to keep them in the same directory as the
rest of the project files. When working with version control tools such as Git, a .gitignore file
can make sure your virtual environments are not checked into the Git repository. Tools such as uv

can help create additional files such as the .gitignore file.

As shown in the preceding code, when starting something new, we often create the directory, and
then cd into that directory. Then, we’ll run the python -m venv env utility to create a virtual
environment, usually with a simple name such as env, and sometimes with a more complex name

such as CaseStudy5ed.

Each time we do some work on a project, we can cd to the directory and execute the source
env/bin/activate (or the Windows variant) command in the terminal window to activate the
virtual environment. When switching projects, a deactivate command unwinds the environment

setup.

Some tools look for external dependencies in files such as requirements. txt. Other tools, such as

uv or poetry, track dependencies in the pyproject.toml file. What’s essential is carefully logging

Chapter 2 63

the dependencies so tools can track and update the modules on which your project depends.

Virtual environments are essential for keeping your third-party dependencies tidy and organized.
Imagine having an old project using a package such as Pydantic version 1.10. A new project starts
up, and the other people you’re working with have decided to upgrade to Pydantic version 2.9.
Using separate virtual environments makes it easy to work on either project in spite of the different
dependencies. (At some point, you may rewrite the old project, and want to test the changes in yet

another virtual environment.)

Virtual environment management

There are several add-on tools for managing virtual environments more effectively. For example

virtualenv, can be used instead of the built-in venv package.

In some cases, even more support and automation is required. If you’re working in a data science
environment, you’ll probably want to use conda so you can install the complex statistical and
scientific packages. The conda tool works with the Anaconda libraries. For more information, see

https://docs.conda.io/en/latest/.

Tools such as uv and poetry can help with installing packages, creating packages, and managing
virtual environments. For more information, see https://docs.astral.sh/uv/ and https:

//python-poetry.org, respectively.

When using a tool like uv, use the uv init command to initialize the project directory. The -app
option sets up the common structure for building an application. The -1ib option will prepare the
kind of directory structure that’s helpful for building a library. With no options, the assumption is

that you’re creating a script file.

The command to incorporate a library into a project will then be slightly different:

% uv add pydantic

This will update the project’s dependencies. When needed, the virtual environment can be rebuilt

with the following:

% uv sync

This command forces uv to examine all the packages you added to work out the compatible versions

https://docs.conda.io/en/latest/
https://docs.astral.sh/uv/
https://python-poetry.org
https://python-poetry.org

64 Objects in Python

of all of the dependencies, and install exactly what’s needed. It keeps the environment tidy, and
reproducible by others. The more projects we work on, the more environments we’ll manage. Tools

can help.

Recall

Some key points in this chapter are as follows:

« Python has optional type hints to help describe how data objects are related and what the

parameters should be for methods and functions.

« We create Python classes with the class statement. We should initialize the attributes in the
special __init__() method.
« Modules and packages are used as higher-level groupings of classes.

« We need to plan out the organization of module content. While the general advice is “flat is

better than nested,” there are a few cases where it can be helpful to have nested packages.

« Python has no notion of “private” data. We often say “we’re all adults here”; we can see the
source code, and private declarations aren’t very helpful. This doesn’t change our design; it

simply removes the need for a handful of keywords.

« We can install third-party packages using PIP tools. We can create a virtual environment, for

example, with venv.
« Some OO design techniques are as follows:
— Encapsulating features into classes

— Composition to build a class from component objects

Exercises

Write some object-oriented code. The goal is to use the principles and syntax you learned in this
chapter to ensure you understand the topics we’ve covered. If you’ve been working on a Python
project, go back over it and see whether there are some objects you can create and add properties
or methods to. If your Python project is large, try dividing it into a few modules or even packages
and play with the syntax. While a “simple” script may expand when refactored into classes, there’s

generally a gain in flexibility and extensibility.

If you don’t have such a project, try starting a new one. It doesn’t have to be something you intend

Chapter 2 65

to finish; just stub out some basic design parts. You don’t need to fully implement everything; often,
just print(“this method will do something”) is all you need to get the overall design in place.
This is called top-down design, in which you work out the different interactions and describe how
they should work before actually implementing what they do. The converse, bottom-up design,
implements details first and then ties them all together. Both patterns are useful at different times,

but for understanding object-oriented principles, a top-down workflow is more suitable.

If you’re having trouble coming up with ideas, try writing an application to maintain a to-do list. It
can keep track of things you want to do each day. Items can have a state change from incomplete
to completed. You might want to think about items that have an intermediate state of started, but

not yet completed.

Another application is hinted at in Chapter 1. There, we have an example of a script that does a lot
of processing. We describe some classes that seem to be part of the script processing. Take some
time to think through some class definitions that might replace the complicated-looking code to

navigate through nested dictionaries. Sketch out the classes that might be relevant.

Now try designing a bigger project. A collection of classes to model playing cards can be an
interesting challenge. Cards have a few features, but there are many variations on the rules. A class
for a hand of cards has interesting state changes as cards are added. Locate a game you like and
create classes to model cards, hands, and play. (Don’t tackle creating a winning strategy; that can
be hard.)

A game like Cribbage has an interesting state change where two cards from each player’s hand are
used to create a kind of third hand, called the “crib.” Make sure you experiment with the package
and module-importing syntax. Add some functions in various modules and try importing them
from other modules and packages. Use relative and absolute imports. See the difference, and try to

imagine scenarios where you would want to use each one.

Summary

In this chapter, we learned how to create classes and assign properties and methods in Python.
Unlike many languages, Python differentiates between a constructor and an initializer. It has a
relaxed attitude toward access control. There are many different levels of scope, including packages,
modules, classes, and functions. We understood the difference between relative and absolute imports,

and how to manage third-party packages that don’t come with Python.

In the next chapter, we’ll learn more about sharing an implementation among classes using inheri-

66 Objects in Python

tance.

Join our community Discord space

Join our Python Discord workspace to discuss and know more about the book: https://packt.1i

nk/dHrHU

=] 21 [m]

https://packt.link/dHrHU
https://packt.link/dHrHU

When Objects Are Alike

In the programming world, duplicate code is considered evil. We should not have multiple copies of
the same, or similar, code in different places. When we fix a bug (or add a feature) in one copy and

fail to make the same change in another copy, we cause no end of problems for ourselves.

There are many ways to merge pieces of code or objects that have a similar functionality. In this
chapter, we’ll be covering the most famous object-oriented principle: inheritance. As discussed
in Chapter 1, inheritance allows us to create “is-a” relationships between two or more classes,
abstracting common logic into superclasses and extending the superclass with specific details in

each subclass. In particular, we’ll be covering the Python syntax and principles for the following:
+ The inheritance relationship
« Using inheritance to write Python classes
« Using inheritance to extend built-in types
« Multiple inheritance
+ Polymorphism and duck typing

We’ll start by taking a close look at how inheritance works to factor out common features so we

can avoid copy-and-paste programming.

68 When Objects Are Alike

The inheritance relationship

For example, there are 32 chess pieces in our chess set, but there are only six different types of
pieces (pawns, rooks, bishops, knights, king, and queen). Each type behaves differently when it is
moved. Each of these piece classes have properties, such as the color and the chess set they are part

of, but they also have unique shapes when drawn on the chess board, and make different moves.

Figure 3.1 shows how the six types of pieces can inherit from a Piece class:

Piece

+chess_set: Chess Set
| +color: Color
+shape: Graphic

/ +move(board: Board, to: Pos)

Rook ‘ Bishop
\
|

King

+shape: Graphic +shape: Graphic +shape: Graphic

+move(board: Board, to: Pos) +move(board: Board, to: Pos) +move(board: Board, to: Pos)

Knight Pawn Queen
+shape: Graphic +shape: Graphic +shape: Graphic
+move(board: Board, to: Pos) +move(board: Board, to: Pos) +move(board: Board, to: Pos)

Figure 3.1: How chess pieces inherit from the Piece class

The hollow arrows indicate that the individual classes of pieces inherit from the Piece class. All the
child classes automatically have a chess_set and color attribute inherited from the base class. Each
piece provides a different shape property (to be drawn on the screen when rendering the board),

and a different move method to move the piece to a new position on the board at each turn.

To be able to move, all subclasses of the Piece class need to have a move method; otherwise, when
the board tries to move the piece, it will get confused. It is possible that we would want to create
a new version of the game of chess that has one additional piece (maybe a wizard). Our current
design will allow us to add this piece without giving it a move method. Attempting to use this

piece without the required method will cause runtime problems.

We can fix this by creating a dummy move () method on the Piece class. The subclasses can then
override this method with a more specific implementation. The default implementation might, for

example, pop up an error message that says That piece cannot be moved.

Overriding methods in subclasses allows very powerful object-oriented systems to be developed.
For example, if we wanted to implement a Player class with artificial intelligence, we might provide

a calculate_move method that takes a Board object and decides which piece to move where.

Chapter 3 69

A very basic class might randomly choose a piece and direction and move it accordingly. We
could then override this method in a subclass with the Deep Blue implementation. (See https:
//www . chess.com/terms/deep-blue-chess-computer.) The first class would be suitable for play
against a raw beginner; the latter would challenge a grand master. The important thing is that other
methods in the class, such as the ones that inform the board as to which move was chosen, need

not be changed; this implementation can be shared between the two classes.

In the case of chess pieces, it doesn’t really make sense to provide a default implementation of the
move method. All we need to do is specify that the move method is required in any subclasses.
This can be done by making Piece an abstract class with the move method declared as abstract.

Abstract methods basically say this:

“We demand this method exist in any non-abstract subclass, but we are declining to

specify an implementation in this class.”

Indeed, it is possible to make an abstraction that does not implement any methods at all. Such a
class would simply tell us what the class should do, but provides absolutely no help on how to do it.
In Python, we often use the abc module to define these abstract base classes. We mark the abstract
methods with an @abstractmethod decorator to act as a reminder that an implementation is

required.

import abc

class Piece(abc.ABC):
def __init__ (self, set: ChessSet, color: Color, shape: Graphic) -> None:
self.chess_set = set
self.color = color
self.shape = shape

@abc.abstractmethod
def move(self, board: Board, to: Position) -> None:

We make an abstract base class a subclass of abc.ABC. Doing this assures that an exception will be
raised if the application attempts to create an instance of a subclass that doesn’t provide concrete

implementations for all of the abstract methods.

The @abc . abstractmethod decorator marks a definition as being only a specification that requires

an override. And yes, the body really is . . .; this is valid Python and it will raise a runtime error

https://www.chess.com/terms/deep-blue-chess-computer
https://www.chess.com/terms/deep-blue-chess-computer

70 When Objects Are Alike

if — somehow — this method were executed. Rest assured, it’s really hard to execute an abstract
method. An application can’t create an instance of the Piece class with this method missing; that’s
a really big obstacle. A TypeExrroxr exception will be raised when trying to create an object from a
class that has abstract methods. Creating an instance of a subclass that provides an implementation

for the abstract methods works as expected.

Using inheritance

The core idea behind inheritance is providing a way to avoid repeating code in multiple classes.

Technically, every class we create uses inheritance. All Python classes are subclasses of the built-in
class named object. This class provides a little bit of metadata and a few built-in behaviors so

Python can treat all objects consistently.

Inheritance requires a minimal amount of extra syntax over a basic class definition. Include the
name of the parent class inside parentheses after the class name (and before the colon that follows.)
This is all we have to do to tell Python that the new class should be derived from the given superclass.
For more information on the syntax, see section 9.5 (https://docs.python.org/3/tutorial/cla

sses.html#inheritance) of the Python Tutorial.

How do we apply inheritance in practice? One use of inheritance is to add functionality to an
existing class. Let’s start with a contact manager that tracks the names and email addresses of
several people. A Contact class can be responsible for maintaining a global list of all contacts ever

seen in a class variable, and for initializing the name and address for an individual contact:

from __ future__ import annotations
from typing import ClassVar

class Contact:
all_contacts: ClassVar[list[Contact]] = []

def _ _init_ (self, name: str, email: str) -> None:
self.name = name
self.email = email
Contact.all_contacts.append(self)

def __repr_ (self) -> str:
return (

https://docs.python.org/3/tutorial/classes.html#inheritance
https://docs.python.org/3/tutorial/classes.html#inheritance

Chapter 3 71

f"{self.__class__.__name__}("
f"{self.name!r}, {self.emaillr}"
fll) "

This example introduces us to two things, class variables, and the __repr_ () method. The
all_contacts list, because it is part of the class definition, is shared by all instances of this class.
This means that there is only one Contact.all_contacts list. There are two modes of access for

this: reading and writing,.

« We can get the value self.all_contacts within any method on an instance of the Contact
class. This works because any attribute that can’t be found in the object (via self), will be

searched for in the class.

« We can only write set value using the name Contact.all_contacts. (If you ever attempt to
set a class variable using self.all_contacts, you will actually be creating a new instance

variable associated just with that object.)

The __repr__() method is used by the built-in repr () function. This function is often used when
printing an object in the interactive Python REPL environment. We often design this function to
produce a line of Python that will recreate the object. We've used the special names __class__and
__name__ to extract some internal information from each object. This exposes the name for the

object’s class.

We can see how the class tracks data with the following example:

>>> c_1 Contact("Dusty", "dusty@example.com")
>>> c_2 Contact("Steve", "steve@itmaybeahack.com")
>>> Contact.all_contacts

[Contact('Dusty', 'dusty@example.com'), Contact('Steve',
'steve@itmaybeahack.com')]

We created two instances of the Contact class and assigned them to variables c_1 and c_2. When
we looked at the Contact.all_contacts class variable, we saw that the list has been updated to

track the two objects.

This class allows us to track a couple of pieces of data about each contact. But what if some of our
contacts are also suppliers that we need to order supplies from? We could add an order method to

the Contact class, but that would allow people to accidentally order things from contacts who are

72 When Objects Are Alike

customers or family friends. Instead, let’s create a new Supplier class that acts like our Contact

class, but has an additional order method that accepts a yet-to-be-defined Order object:

class Supplier(Contact):
def order(self, order: "Order") -> None:
print(
"If this were a real system we would send "
f"'{order}' order to '{self.name}'"

Now, if we test this class in our trusty interpreter, we see that all contacts, including suppliers, accept
a name and email address in their __init__() method. But we can also see that only Supplier

instances have an order () method:

>>> ¢ Contact("Some Body", "somebody@example.net")
>>> s = Supplier("Sue Plier", "supplier@example.net")
>>> print(c.name, c.email, s.name, s.email)

Some Body somebody@example.net Sue Plier supplier@example.net
>>> from pprint import pprint

>>> pprint(c.all_contacts)

[Contact('Dusty', 'dusty@example.com'),
Contact('Steve', 'steve@itmaybeahack.com'),
Contact('Some Body', 'somebody@example.net'),
Supplier('Sue Plier', 'supplier@example.net')]

>>> c.order("I need pliexrs")

Traceback (most recent call last):

AttributeError: 'Contact' object has no attribute 'order'

>>> s.order("I need pliers")

If this were a real system we would send 'I need pliers' order to 'Sue
Plier'

Our Supplier class can do everything the Contact class can do (including adding itself to the
list of Contact.all_contacts) and also does special things it needs to handle as a supplier. This

code-sharing is the beauty of inheritance.

Because we used the object’s __class__and __name__ special attribute names, the Contact class

and Supplier and subclass will both report the correct class name.

Also, note that Contact.all_contacts has collected every instance of the Contact class as well as

the subclass, Supplier.

Chapter 3 73

Extending built-ins

One interesting use of this kind of inheritance is adding functionality to built-in classes. In the
Contact class seen earlier, we are adding contacts to a list of all contacts. What if we also wanted
to search that list by name? Well, we could add a method on the Contact class to search it, but it

feels like this method actually belongs to the list itself.

The following example shows how we can do this using inheritance from a built-in type. In this

case, we're extending the built-in 1ist type.
from _ future__ import annotations

class ContactList(list["Contact"]):
def search(self, name: str) -> list[Contact]:
"""All Contacts with name that contains the name parameter's
value."""
matching_contacts: list[Contact] = []
for contact in self:
if name in contact.name:
matching_contacts.append(contact)

return matching_contacts

class Contact:
all_contacts = ContactList()

def __init__ (self, name: str, email: str) -> None:
self.name = name
self.email = email
Contact.all_contacts.append(self)

def _ repr_ (self) -> str:

return (
f"{self.__class__.__name__}("
f"{self.name!r}, {self.emaillr}"
fry"

Note that — in spite of using the __future__ module — the type we’re creating is written as
list[“Contact”] with quotation marks around the yet-to-be-defined Contact type. This kind of
forward reference doesn’t work in Python 3.13, so we’re forced to refer to not-yet-defined types

with string names. Or, we could change the order of the definitions.

74 When Objects Are Alike

Instead of instantiating the generic 1ist class to create our all_contacts class variable, we create a
new ContactList instance; this extends the built-in 1ist data type, making a stronger claim about

what types of objects will populate this list. We can test the new search functionality as follows:

>>> ¢l Contact("John A", "johna@example.net")
>>> c2 Contact("John B", "johnb@sloop.net")
>>> c3 Contact("Jenna C", "cutty@sark.io")

>>> Contact.all_contacts.search('John')
[Contact('John A', 'johna@example.net'), Contact('John B',
'johnb@sloop.net')]

Recall that Python has two ways to create generic 1ist objects. Creating a list with [] is actually a

shortcut for creating a list using 1ist(); the two syntaxes behave identically:

>>> [] == 1list()

True

The [] is short and sweet. We can call it syntactic sugar. This is a call to the 1ist() constructor,

written with two characters instead of six.

Tools such as mypy can check the body of the ContactList.search() method to be sure it really
will create a 1ist instance populated with Contact objects. The extra detail in the type annotations
can be a big help for preventing problems. The type-checking tool can alert us to code that may not

do what we intended.

Because we provided the Contact class definition after the definition of the ContactList class, we
had to provide the reference to a not-yet-defined class as a string, 1ist[“Contact”]. It’s more
common to provide the individual item class definition first, and the collection can then refer to the

defined class by name without using a string. For this example, we provided them out of order.

The construction of a list of items can be simplified from this design pattern — using a for statement
that appends to a list. This can be simplified to a “list comprehension.” This is the subject of

Chapter 10.

As a second example, we can extend the dict class, which is a collection of keys and their associated
values. We can create instances of dictionaries using the syntax sugar. Here’s an extended dictionary

that tracks the longest key it has seen:

Chapter 3 75

class LongNameDict(dict[str, int]):
def longest_key(self) -> str | None:

"""In effect, max(self, key=len), but less obscure"""
longest = None

for key in self:

if longest is None or len(key) > len(longest):
longest = key
return longest

The hint for the class narrowed the generic dict to a more specific dict[str, int]. This means
the keys are of type str and the values are of type int. This helps tools (and people) reason about
the LongNameDict class. (For more on generic types, see Chapter 7.) Since the keys are supposed to
be str-type objects, the statement for key in self: will iterate over str objects. The result will

be str, or possibly None. That’s why the result is described as str | None.

(This raises questions, also. Is None appropriate? Perhaps not. Perhaps a ValueError exception is a
better idea than returning some value that stands in for an error. Further design will have to wait

until Chapter 4.)

This class is going to be working with strings and integer values. Perhaps the strings are usernames,
and the integer values are the number of articles they’ve read on a website. In addition to the core
username and reading history, we also need to know the longest name so we can format a table of

scores with the right size display box. This is easy to test in the interactive interpreter:

>>> articles_read = LongNameDict()
>>> articles_xread['lucy'] = 42
>>> articles_read['c_c_phillips'] = 6

>>> grticles_xread['steve'] = 7
>>> articles_read.longest_key()
'c_c_phillips'

What if we wanted a more generic dictionary? Say, with either strings or integers as the values?
We'd need a slightly more expansive type hint. We might use dict[stx, str | int] to describe a
dictionary mapping strings to a union of either strings or integers. For more on these kinds of type

unions, we’ll wait for Chapter 7.

In the next section, we’ll look more deeply at the benefits of inheritance and how we can selectively

leverage features of the superclass in our subclass.

76 When Objects Are Alike

Overriding and super()

Inheritance is great for adding new behavior to existing classes, but what about changing behavior?
Our Contact class allows only a name and an email address. This may be sufficient for most contacts,

but what if we want to add a phone number for our close friends?

As we saw in Chapter 2, we can do this by setting a phone attribute on the contact after it is
constructed. But if we want to make this additional attribute part of initialization, we have to
override the __init__() method. Overriding means altering or replacing a method of the superclass
with a new method (with the same name) in the subclass. No special syntax is needed to do this;
the subclass’s newly created method is automatically called instead of the superclass’s method, as

shown in the following code:

class Friend(Contact):
def __init__ (self, name: str, email: str, phone: str) -> None:
self.name = name
self.email = email
self.phone = phone

Any method can be overridden, not just __init__(). Before we go on, however, we need to address
some problems in this example. Specifically, the Contact and Friend classes have duplicate code to
set up the name and email properties. This can make code maintenance complicated, as we have
to update the code in two places. More alarmingly, our Friend class is neglecting to add itself to
the all_contacts list we have created on the Contact class. Finally, looking forward, if we add a
feature to the Contact class, we’d like it to also be part of the Friend class, and that can’t happen

with the code as shown.

What we need is a way to execute the original __init__ () method of the Contact class from inside
our new class. This is what the built-in super() function does: it returns the object as if it was
actually an instance of the parent class, allowing us to call the parent method directly. It looks like

this:

class Friend_S(Contact):
def __init__ (self, name: str, email: str, phone: str) -> None:
super().__init__(name, email)
self.phone = phone

Chapter 3 77

(We’ve given this variant an atypical name to make it clearly distinct from the previous example.
The name doesn’t fit Python naming conventions. We use it so we can put the examples in a single

file for side-by-side comparison purposes.)

This example first binds the instance to the parent class using super() and calls __init_ () on
that object, passing in the expected arguments. The Friend_S class then does its own initialization,

namely, setting the phone attribute, processing that is unique to the Friend_S class.

The Contact class provided a definition for the __repr__ () method to produce a string representa-
tion. Our subclass did not override the __repr__() method inherited from the superclass. Here’s

the consequence of that:

>>> f = Friend("Dusty", "Dusty@private.com", "555-1212")
>>> f

Friend('Dusty', 'Dusty@private.com')

The details shown for a Friend_S instance don’t include the new phone attribute. It’s easy to

overlook the special method definitions, such as __repr__ (), when thinking about class design.

This requires adding the method, like the following example:

def _ repr_ (self) -> str:

return (
f"{self.__class__.__name__}("
f"{self.name!r}, {self.emaill!r}, {self.phone!r}"
fry"

A super () call can be made inside any method. Therefore, all methods can be extended via overriding
and using calls to supex(). The call to super() can also be made at any point in the method; we
don’t have to make the call as the first line. For example, we may need to manipulate or validate

incoming parameters before forwarding them to the superclass.

Composition as an alternative to inheritance

When looking at the chess piece design in sectionThe inheritance relationship, we used inheritance to
isolate common features of distinct varieties of pieces. This isn’t the only tool we have for isolating
common code. We could — just as easily — define a number of classes that have the different kinds of

move () methods. This would include a class for pawns, rooks, knights, bishops, kings, and queens,

78 When Objects Are Alike

since each has a distinct move implementation.

Each piece would be a composition of Piece methods that show the position and the display icon
for the piece — and other things such as relative value when considering a capture — and an instance

of one of the Move classes.

At this point, one common question is “Which is better?”. This is a difficult question, because a
word like better isn’t bound to any specific measurable feature of the software. The choice between

composition or inheritance is always a difficult one to make.

Generally, we like to characterize an inheritance relationship with the name “is-a” We try to
characterize the various kinds of composition and aggregation as “has-a.” In the case of chess pieces,

it’s clear that “A pawn is a chess piece” is clear and helpful for software designers.

In some cases, it helps to enumerate all of the “is-a” statements from a UML diagram to see if they’re
really sensible. We might find some places where an “is-a” statement seems wrong, or pushes

against the real-world things we’re modeling.

Imagine we have an e-commerce application where an email address is modeled as a subclass of
URL’s. Perhaps these classes have some common methods; someone defined a common abstract
class that encompassed both URL strings and email address strings. It helps think of how to defend
a statement such as “An email address is a URL” to a skeptical colleague. (Or, maybe, think of
yourself in the future when you haven’t looked at this software in a year.) It seems clear that an
email isn’t a URL, but has some features common with a URL. In this case, using a composition of

features might be smarter than inheritance.
Often, choosing between “is-a” and “has-a” is obvious. One of the variants makes perfect sense.

The two design techniques are peers: they accomplish the same goals with about the same intellectual
costs and runtime overheads. We can consider the SOLID design principles when looking for some
guidance. Much of the time, we have to pause and reflect on what the design seems to mean about

the world.

Multiple inheritance

Multiple inheritance is a touchy subject. In principle, it’s simple: a subclass that inherits from more
than one parent class can access functionality from both of them. In practice, it requires some care

to be sure any method overrides are fully understood.

As a humorous rule of thumb, if you think you need multiple inheritance, you’re probably wrong,

Chapter 3 79

but if you know you need it, you might be right. This is often taken to be a dire warning: don’t
attempt multiple inheritance. We don’t think this dire warning is appropriate if a few patterns are
followed.

The simplest and most useful form of multiple inheritance follows a design pattern called the mixin.
A mixin class definition is not intended to exist on its own, but is meant to be inherited by some
other class to provide extra functionality. For example, let’s say we wanted to add functionality to

our Contact class that allows sending an email to self.email.

Sending email is a common task that we might want to use on many other classes. So, we can write

a mixin class to add the email feature:
from typing import Protocol

class Emailable(Protocol):
email: str

class MailSender(Emailable):
def send_mail(self, message: str) -> None:
print(f"Sending mail to {self.email=}")
Add e-mail logic here

For brevity, we didn’t include the actual email logic here; if you’re interested in studying how it’s

done, see the smtplib module in the Python standard library.

It’s a common practice to use an adjective, such as Emailable, for the mixin class name. This helps
readers to understand a mixin as a way of encapsulating a specific action or focused group of actions.

The idea is to use a mixin to add an ability to a base class.

The MailSender class can barely function as a standalone class. This mixin doesn’t have any
__init__ () special method to set the instance variables. The email attribute here is a type hint.
This isn’t an instance variable; it’s a suggestion that the base class will provide this as an instance

variable.

This attribute defines a protocol that the mix of classes must satisfy. In this case, the protocol is only
a single attribute and type. It defines an aspect that must be present in a concrete class; tools such
as mypy will object if the aspect is not present. The name self.email can be resolved as either
an instance variable, or a class-level variable, or a property. (For more details on what properties

are, see Chapter 5.) If the parent class doesn’t properly provide this attribute, the mixin subclass

80 When Objects Are Alike

methods can’t possibly work.

Mixin-style design can require some care to make sure the various mixin classes have clearly
segregated interface protocols. The Interface Segregation Principle is helpful when considering this
kind of design. Think of a class with actions that have multiple implementation choices. Maybe one
mixin choice uses less memory while another mixin alternative runs faster. One can then choose

appropriate mixins based on an application’s unique optimization goals.

We can use the MailSender mixin with any class that has an email attribute defined. Doing this

lets us define a new class that describes both Contact and MailSender, using multiple inheritance:

class EmailableContact(Contact, MailSender):
pass

The syntax for multiple inheritance looks like a parameter list in the class definition. Instead of
including one base class inside the parentheses, we include two (or more), separated by a comma.
It’s possible to build classes that have no unique features of their own. A class can be defined as a
combination of mixins. In this case, the body of the class definition is often nothing more than the

pass placeholder statement.

We can test this new hybrid to see the mixin at work:

>>> e = EmailableContact("John B", "johnb@sloop.net")
>>> Contact.all_contacts
[EmailableContact('John B', 'johnb@sloop.net')]

>>> e.send_mail("Hello, test e-mail here")
Sending mail to self.email='johnb@sloop.net'

The Contact initializer is still adding the new contact to the all_contacts list, and the mixin is

able to send mail to self.email, so we know that everything is working.

This wasn’t so hard, and you’re probably wondering why the “don’t attempt multiple inheritance”
dire warnings are repeated so often. We’ll get into the complexities in a minute, but let’s consider

some other options we had for this example, rather than using a mixin:

« We could have used single inheritance and added the send_mail function to a subclass of
Contact. The disadvantage here is that the email functionality then has to be duplicated for
any unrelated classes that need an email. For example, if we had email information in the

payments part of our application, unrelated to these contacts, and we wanted a send_mail()

Chapter 3 81

method, we’d have to duplicate the code.

« We can create a standalone Python function for sending an email, and call that function with
the correct email address supplied as a parameter when the email needs to be sent. This is a
very popular choice in Python. Because the function is not part of a class, it’s harder to be
sure that proper encapsulation is being used, particularly when there are other state changes

such as counting emails.

« We could use composition instead of inheritance. For example, EmailableContact could
have a MailSender object as a property instead of inheriting from it. This leads to a more
complex MailSender class because it now has to stand alone. It also leads to a more complex

EmailableContact class because it has to associate a MailSender instance with each Contact.

« We could try to “monkey patch” the Contact class to have a send_mail method after the
class has been created. (We'll briefly cover monkey patching in Chapter 13.) This is done by
defining a function that accepts the self argument, and setting this function as an attribute
on an existing class. While acceptable for creating a unit test fixture, this is terrible for the

application itself. Future you will never figure out how the method got added to the class.

Multiple inheritance works best when we’re mixing methods from different classes, but it can be
messy when we have to call methods on the superclass. When there are multiple superclasses, how
do we know which one’s methods to call? What is the rule for selecting the appropriate superclass

method?

Let’s explore these questions by adding a home address to our Friend class. There are a few

approaches we might take:

« An address is a collection of strings representing the street, city, country, and other related
details of the contact. We could pass each of these strings as a parameter into the Friend
class’s __init__() method. We could also store these strings in a generic tuple or dictionary.
These options work well when the address information doesn’t need new methods. Adding

methods suggests we should encapsulate this as a separate class.

« Another option would be to create our own Address class to hold those strings together,
and then pass an instance of this class into the __init__() method in our Friend class. The
advantage of this solution is that we can add behavior (say, a method to give directions or to
print a map) to the data instead of just storing it statically. This is an example of composition,
as we discussed in Chapter 1. The “has-a” relationship of composition is a perfectly viable

solution to this problem and allows us to reuse Address classes in other entities, such as

82 When Objects Are Alike

buildings, businesses, or organizations.

« A third course of action is a collaborative multiple inheritance design. We’ll look at how
to use mixin classes to create this more sophisticated definition. Follow along as we step
through an implementation that doesn’t work out before landing on a design that seems to

do everything we need.

The objective here is to add a mixin class to hold an address. We’ll call this new class AddressHolder
instead of Address because inheritance defines an “is-a” relationship. It is not correct to say a
Friend is an Address. It seems much better to say Friend has an Address; we can also argue that a
Friend class is an AddressHolder class. Later, we could create other entities (companies, buildings)
that also hold addresses. (Convoluted naming and nuanced questions about “is-a” are indications

we should be sticking with composition, rather than inheritance.)

Why “AddressHolder”? Why not “Addressable”? Frequently, mixins have names that are adjectives
and reflect an action that’s defined by the mixin. The English verb to address seems like it applies
here, but it also seems a little misleading: it seems more like this mixin holds some additional
attributes. Calling it a holder seems a little nicer than calling it a holdable. This reinforces the
common observation that one of the two hardest problems in computing is naming things. (The

others are cache invalidation and off-by-one errors.)

Here’s a naive AddressHolder class. We're calling it naive because it doesn’t account for multiple

inheritance well:

class AddressHolder:
def __init_ (

self,
street: str,
city: str,
state: str,
code: str

) -> None:

self.street = street
self.city = city
self.state = state
self.code = code

We take all the data and toss the argument values into instance variables upon initialization. We’ll

look at the consequences of this, and then show a better design.

Chapter 3 83

The diamond problem

We can use multiple inheritance to add this new class as a parent of our existing Friend class. The
tricky part is we now have two parent __init__() methods, both of which need to be called. And

they need to be called with different arguments. How do we do this?

Well, we could start with a naive approach for the Friend class, also:

class Friend_A(Contact, AddressHolder):
def __init_ (

self,
name: str,
email: str,
phone: str,
street: str,
city: str,
state: str,
code: str,

) -> None:

Contact.__init_ (self, name, email)
AddressHolder.__init__ (self, street, city, state, code)
self.phone = phone

(We’ve given it an odd-looking name of Friend_A because — spoiler alert — it won’t work out very

well.)

In this example, we directly call the __init__() function on each of the superclasses and explicitly
pass the self argument. This example technically works; we can access the different variables

directly in the class. But there are a few problems.

First, consider someone adding yet another mixin. That new superclass could remain uninitialized
if we neglect to explicitly call a new initializer. We would get a lot of AttributeError exceptions
stemming from a class where there’s clearly an __init__() method. It’s rarely obvious that the

__init__ () method wasn’t actually used.

A more insidious possibility is a superclass being called multiple times because of the organization

of the class hierarchy. We call this the Diamond Problem.

Figure 3.2 shows this complicated inheritance problem:

84 When Objects Are Alike

Object
+__init__()
Contact AddressHolder
+__init_0 +__init_()
Friend
+__init__()

Figure 3.2: Inheritance diagram for the Friend class

The __init__ () method from the Friend class first calls __init__ () on the Contact class, which
implicitly initializes the object superclass (remember, all classes derive from object). Then, after
doing this, the Friend class calls __init__() on AddressHolder, which implicitly initializes the
object superclass again. This means the parent class has been set up twice. With the object class,
that’s relatively harmless, but in some situations, it could spell disaster. Imagine trying to connect

to a database twice for every request!

The base class should only be called once. Once, yes, but when? Do we call Friend, then Contact,
then Object, and then AddressHolder? Or Friend, then Contact, then AddressHolder, and then
Object?

Let’s switch from methods called implicitly, to one we need to call explicitly. This will let us see the
problem more clearly. Here, we have a base class, BaseClass, that has a method named call_me().
Two subclasses, LeftSubclass and RightSubclass, extend the BaseClass class, and each overrides

the call_me() method with different implementations.

Then, another subclass extends both of these using multiple inheritance with a fourth, distinct

implementation of the call_me() method.

Figure 3.3 shows why this is called diamond inheritance, note the diamond shape of the class

diagram:

Chapter 3

BaseClass

+call_me()
LeftSubclass RightSubclass
+call_me() +call_me()

SubClass

+call_me()

Figure 3.3: Diamond inheritance

Let’s convert this diagram into code. This example shows when the methods are called:

class BaseClass:
num_base_calls = 0

def call_me(self) -> None:
print("Calling method on BaseClass")
self.num_base_calls += 1

class LeftSubclass(BaseClass):
num_left_calls = @

def call_me(self) -> None:
BaseClass.call_me(self)
print("Calling method on LeftSubclass")
self.num_left_calls += 1

class RightSubclass(BaseClass):
num_right_calls = @

def call_me(self) -> None:
BaseClass.call_me(self)
print("Calling method on RightSubclass")
self.num_right_calls += 1

86 When Objects Are Alike

class Subclass(LeftSubclass, RightSubclass):
num_sub_calls = 0

def call_me(self) -> None:
LeftSubclass.call_me(self)
RightSubclass.call_me(self)
print("Calling method on Subclass")
self.num_sub_calls += 1

This example ensures that each overridden call_me() method directly calls the parent method
with the same name. It lets us know each time a method is called. It also creates a distinct instance

variable to show how many times it has been called.

This relies on the way Python search starts with the instance, then the class for an object. The very
first time it looks for self.num_sub_calls, the attribute is not part of the instance. It is, however,
part of the class, and this value is fetched. The assignment statement will then create a new instance

variable. Ever after, the instance variable will be found first.

If we instantiate one Subclass object and call the call_me () method on it once, we get the following

output:

>>> s = Subclass()

>>> s.call_me()

Calling method BaseClass
Calling method LeftSubclass
Calling method BaseClass
Calling method RightSubclass
Calling method Subclass

>>> print(
.num_sub_calls,
.num_left_calls,

.num_right_calls,
... S.num_base_calls)
1112

We can see the base class’s call_me () method being called twice. This could lead to some pernicious

bugs if that method is doing actual work, such as depositing into a bank account, twice.

Chapter 3 87

Python’s Method Resolution Order (MRO) algorithm transforms the diamond into a flat, linear
tuple. We can see the results of this in the __mro__ attribute of a class. The linear version of this
diamond is the sequence Subclass, LeftSubclass, RightSubClass, BaseClass, object. What’s
important here is that Subclass lists LeftSubclass before RightSubClass; this imposes a strict

ordering on the classes in the multiple-inheritance diamond.

The thing to keep in mind with multiple inheritance is that we often want to call the next method
in the MRO sequence, not necessarily a method of the parent class. The super() function locates

the name in the MRO sequence.

Here is the same code written using super (). We’ve renamed some of the classes, adding an _S to

make it clear this is the version using super():

class LeftSubclass_S(BaseClass):
num_left_calls = @

def call_me(self) -> None:
super().call_me()
print("Calling method on LeftSubclass_S")
self.num_left_calls += 1

class RightSubclass_S(BaseClass):
num_right_calls = @

def call_me(self) -> None:
super().call_me()
print("Calling method on RightSubclass_S")
self.num_right_calls += 1

class Subclass_S(LeftSubclass_S, RightSubclass_S):
num_sub_calls = 0

def call_me(self) -> None:
super().call_me()
print("Calling method on Subclass_S")
self.num_sub_calls += 1

The change is pretty minor; we only replaced the naive direct calls with calls to super(). The

definition for BaseClass didn’t change at all. The Subclass_S class, at the bottom of the diamond,

38 When Objects Are Alike

only calls super () once rather than having to make the calls for both the left and right. The change

is easy enough, but look at the difference when we execute it:

>>> ss = Subclass_S()

>>> ss.call_me()

Calling method on BaseClass
Calling method on RightSubclass_S
Calling method on LeftSubclass_S
Calling method on Subclass_S

>>> print(

. Ss.num_sub_calls,

. ss.num_left_calls,

. ss.num_right_calls,
... Ss.num_base_calls)
1111

This output looks good: our base method is only being called once. We can see how this works by

looking at the __mro__ attribute of the class:

>>> from pprint import pprint
>>> pprint(Subclass_S.__mro__)
(<class 'diamond.Subclass_S'>,

<class 'diamond.LeftSubclass_S'>,
<class 'diamond.RightSubclass_S'>,
<class 'diamond.BaseClass'>,
<class 'object'>)

The order of the classes shows what order super() will use. The last class in the tuple is generally

the built-in object class. As noted earlier in this chapter, it’s the implicit superclass of all classes.

This shows what super() is actually doing. Since the print statements are executed after the
super () calls, the printed output is in the order each method is actually executed. Let’s look at the

output from back to front to see who is calling what:

1. We start with the Subclass_S.call_me() method. This evaluates super().call_me(). The
MRO shows LeftSubclass_S as next.

2. This begins with evaluation of the LeftSubclass_S.call_me() method. This evaluates
supex().call_me(). The MRO puts RightSubclass_S as next. This is not a superclass; it’s

adjacent in the class diamond.

Chapter 3 89

3. Then, evaluation proceeds to the RightSubclass_S.call_me() method, super().call_me().
This leads to BaseClass.

4. Then, the BaseClass.call_me() method finishes its processing: printing a message and

setting an instance variable, self.num_base_calls, to BaseClass.num_base_calls + 1.

5. Then, the RightSubclass_S.call_me() method can finish, printing a message and setting

an instance variable, self.num_right_calls.

6. Then, the LeftSubclass_S.call_me() method will finish by printing a message and setting

an instance variable, self.num_left_calls.

7. This serves to set the stage for Subclass_S to finish its call_me() method processing. It

writes a message, sets an instance variable, and rests, happy and successful.

The supex () call is not calling the method on the superclass of LeftSubclass_S
| (which is BaseClass). Rather, it is calling RightSubclass_S, even though it is not a

N\ 7/
'@- direct parent of LeftSubclass_S. This is the next class in the MRO, not the parent

4 N\

class. RightSubclass_S then calls BaseClass and the super() calls have ensured

each method in the class hierarchy is executed once.

This feature of super() solves the diamond problem elegantly, allowing multiple inheritance to

have well-defined behaviors.

Different sets of arguments

Things can get complicated as we return to our Friend example. In the __init__() method for the
Friend class, we were originally delegating initialization to the __init__ () methods of both parent

classes, with different sets of arguments:

leContact('John B', 'johnb@sloop.net')]
nd_mail("Hello, test e-mail here")

How can we manage different sets of arguments when using super()? We only really have access
to the next class in the MRO sequence. Because of this, we need a way to pass the extra arguments
through the constructors so that subsequent calls to super(), from other mixin classes, receive the

right arguments.

It works like this. The first call to super () provides arguments to the first class of the MRO, passing

90 When Objects Are Alike

the name and email arguments to Contact.__init__(). Then, when Contact.__init__() calls
super (), it needs to be able to pass the address-related arguments to the method of the next class

in the MRO, which is AddressHolder.__init__ ().

This problem often manifests itself any time we want to call a superclass method with the same
name, but with different sets of arguments. Collisions often arise around the special method names.
Of these, the most common example is having a different set of arguments to various __init__()

methods, as we’re doing here.

There’s no magical Python feature to handle cooperation among classes with methods that have
divergent parameters. Indeed, this is often flagged a violation of the Liskov Substitution Principle:
the subclass methods don’t properly match the superclass methods. Consequently, this requires
some care to design our class parameter lists. One multiple inheritance approach is to accept
keyword arguments for any parameters that are not required by every subclass implementation. A
method must pass the unexpected arguments on to its super () call, in case they are necessary to

later methods in the MRO sequence of classes.

While this works and works well, it’s difficult to describe with type hints. Instead, we have to

silence mypy in a few key places.

Python’s function parameter syntax provides a tool we can use to do this, but it makes the overall

code look cumbersome. Have a look at a version of the Friend multiple inheritance code:

class Contact:
all_contacts = ContactList()

def __init_ (self, /, name: str = , email: str =
None:
super().__init__(**kwargs) # type: ignore [call-arg]
self.name = name
self.email = email

self.all_contacts.append(self)

, **kwargs: Any) ->

def __repr_ (self) -> str:
return f"Contact(" f"{self.name!r}, {self.emaillr}" f")"

class AddressHolder:
def _ init_ (
self,

Chapter 3 91

/,

street: str = "",
city: str = "",
state: str = ""
code: str = "",
**kwargs: Any,

) -> None:
super().__init__(**kwargs) # type: ignore [call-arg]
self.street = street
self.city = city
self.state = state
self.code = code

class Friend(Contact, AddressHolder):
def __init__ (self, /, phone: str = "", **kwargs: Any) -> None:
super().__init__(**kwargs)
self.phone = phone

We’ve added the **kwargs parameter, which collects all additional keyword argument values into a
dictionary. When called with Contact (name="this”, email=“that”, street="something”), the
street argument is put into the kwargs dictionary; these extra parameters are passed up to the next
class with the super () call. The special parameter / separates parameters that could be provided
by position in the call from parameters that require a keyword to associate them with an argument

value. We've given all string parameters an empty string as a default value, also.

If you aren’t familiar with the **kwargs syntax, it will be set to a dictionary built from all keyword
arguments passed into the method not explicitly listed in the parameter list. When we call a method,
for example, super().__init__(),with **kwargs as an argument value, it unpacks the dictionary
and passes the results to the method as keyword arguments. We’ll look at this in more depth in

Chapter 9.

We’ve introduced two comments that are addressed to tools like mypy (and any person scrutinizing
the code). The # type: ignore comments provide a specific error code, call-arg, on a specific
line to be ignored. In this case, we need to ignore the super().__init__(**kwargs) calls because
it isn’t obvious to mypy what the MRO will be at runtime. As someone reading the code, we can
look at the Friend class and see the order: Contact and AddressHolder. This order means that

inside the Contact class, the super() function will locate the next class, AddressHolder.

92 When Objects Are Alike

The mypy tool, however, doesn’t look this deeply; it goes by the explicit list of parent classes in
the class statement. Since there’s no parent class named, mypy is only able to infer the object
class will be located by super(). Since object.__init_ () does not take any arguments, the
super().__init__ (**kwargs) in both Contact and AddressHolder appear incorrect. Practically,
the chain of classes in the MRO will consume all the various parameters and there will be nothing

left over for the AddressHolder class’s __init__ () method.

If we want to be sure that all the names from kwargs are consumed, we need to add an error check.
The next-to-last class in the __mro__ chain should not receive any additional values in kwargs. (The
last class is always object.) If the AddressHolder class gets any kwargs, it’s something that was
not consumed by any of the previous classes; raising a TypeError exception for this situation is

appropriate. The object class will do this.

The previous example does what it is supposed to do. But it’s supremely difficult to answer the
question: What arguments do we need to provide to the Friend.__init__() method? This is the
foremost question for anyone planning to use the class, so a docstring should be added to the

method to explain the entire list of parameters from all the parent classes.

The error message in the event of a misspelled or extraneous parameter can be confusing, also.
The message TypeError: object.__init_ () takes exactly one argument (the instance to
initialize) isn’t too informative on how an extra parameter came to be provided to

object.__init__ ().

We have covered many of the caveats involved with cooperative multiple inheritance in Python.
Multiple inheritance following the mixin pattern often works out very nicely. The idea is to have
additional methods defined in mixin classes, avoid overlapping method names, and keep all the
attributes centralized in a single class hierarchy. This can avoid the complexity of cooperative
initialization.

Design using composition also often works better than complex multiple inheritance. Many of the
design patterns we’ll be covering in Chapter 11 and Chapter 12, are examples of composition-based

design.

The inheritance paradigm depends on a clear “is-a” relationship between classes. Multiple inheri-
tance folds in other relationships that aren’t as clear. We can say that an “Email is a kind of Contact,”
for example. This seems perfectly sensible. But it doesn’t seem as clear that we can say “A Customer
is an Email” It seems better to say “A Customer has an Email address” or “A Customer is contacted

via Email,” using a composition-like “has-an” or “is contacted by” relationship instead of a direct

Chapter 3 93

“is-a” relationship.

Polymorphism

Polymorphism is a showy name describing a simple concept: different behaviors happen depending
on which subclass is being used, without having to explicitly know what the subclass actually is. It
is characterized by the Liskov Substitution Principle. The design principle reminds us we should be

able to substitute any subclass for its superclass.

As an example, imagine a program that plays audio files. A media player might need to load an
AudioFile object and then play it. We can put a play() method on the object, which is responsible
for decompressing or extracting the audio and routing it to the sound card and speakers. The act of

playing an AudioFile object could feasibly be as simple as this:

from pathlib import Path

audio_file = SomePlayer(Path("/path/to/file"))
audio_file.play()

However, the process of decompressing and extracting an audio file is very different for different
types of files. While .wav files are stored uncompressed, .mp3, .wma, and . ogg files each use totally

different compression algorithms.

We can use inheritance with polymorphism to simplify the design. Each type of file can be rep-
resented by a different subclass of AudioFile, for example, WavFile and MP3File. Each of these
would have a play () method that would be implemented differently for each file to ensure that the
correct extraction procedure is followed. The media player object would never need to know which
subclass of AudioFile it is referring to; it just calls play() and polymorphically lets the object take
care of the actual details of playing. Let’s look at a quick skeleton showing how this might work.

We’ll start with an abstract base class to define an interface that all subclasses will share:
from pathlib impoxrt Path

import abc

class AudioFile(abc.ABC):
ext: str

94 When Objects Are Alike

def __init__ (self, filepath: Path) -> None:
if not filepath.suffix == self.ext:
raise ValueError(f"invalid file format {filepath.suffix!r}")
self.filepath = filepath

@abc.abstractmethod
def play(self) -> None:

Here are some concrete subclasses:

class MP3File(AudioFile):
ext = ".mp3"

def play(self) -> None:
print(f"playing {self.filepath} as mp3")

class WavFile(AudioFile):
ext = ".wav"

def play(self) -> None:
print(f"playing {self.filepath} as wav")

class OggFile(AudioFile):
ext = ".ogg

def play(self) -> None:
print(f"playing {self.filepath} as ogg")

All audio files check to ensure that a valid extension was given upon initialization. If the filename
doesn’t end with a recognized correct name, it raises an exception (exceptions will be covered in

detail in Chapter 4).

But did you notice how the __init__() method in the base class, AudioFile, is able to access
the ext class variable from any of the subclasses? That’s polymorphism at work. The AudioFile
parent class merely has a type hint explaining to tools such as mypy that there will be an attribute
named ext. It doesn’t actually store a reference to the ext attribute. When the inherited method

is used by a subclass, then the subclass’ definition of the ext attribute is used. The type hint help

Chapter 3 95

annotation-checking tools warn us about a class missing the attribute assignment.

In addition, each subclass of AudioFile implements play() in a different way (this example doesn’t
actually play the music; audio compression algorithms really deserve a separate book!). This is also
polymorphism in action. The media player can use the exact same code to play a file, no matter what
type it is; it doesn’t care what subclass of AudioFile it is looking at. The details of decompressing

the audio file are encapsulated. If we test this example, it works as we would hope:

>>> p_1 = MP3File(Path("Heart of the Sunrise.mp3"))
>>> p_1.play()

playing Heart of the Sunrise.mp3 as mp3

>>> p_2 = WavFile(Path("Roundabout.wav"))

>>> p_2.play()

playing Roundabout.wav as wav

>>> p_3 = OggFile(Path("Heart of the Sunrise.ogg"))
>>> p_3.play()

playing Heart of the Sunrise.ogg as ogg

>>> error = MP3File(Path("The Fish.mov"))

Traceback (most recent call last):

ValueError: invalid file format '.mov'

See how AudioFile.__init__ () can check the file type without actually knowing which subclass

it is referring to?

Polymorphism is actually one of the coolest things about object-oriented programming, and it

makes some programming designs obvious that weren’t possible in earlier paradigms.

Python makes polymorphism even easier because of a technique called “duck typing.” Duck typing
in Python allows us to use any object that provides the required behavior without forcing it to be a
subclass of a common parent class. The dynamic nature of Python makes this trivial. The following
example class does not extend AudioFile, but it can be interacted with in Python using the same

interface:

class FlacFile:
def __init_ (self, filepath: Path) -> None:
if not filepath.suffix == ".flac":
raise ValueError("Not a .flac file")
self.filepath = filepath

96 When Objects Are Alike

def play(self) -> None:
print(f"playing {self.filepath} as flac")

Our media player can play objects of the FlacFile class just as easily as objects of classes that
extend AudioFile. They have the same APIL but don’t share any common base class (except for
object).

Polymorphism is one of the most important reasons to use inheritance in many object-oriented
contexts. Because any objects that supply the correct interface can be used interchangeably in
Python, then duck typing reduces the need for polymorphic common superclasses. Inheritance is
useful for sharing code, but if all that is being shared is the public interface, duck typing is all that

is required.

In some cases, we can formalize this kind of duck typing using a typing.Protocol type definition.
To make tools such as mypy aware of the expectations, we can define a number of functions using

a formal Protocol type.

For example, we could define a common features between the FlacFile class and the AudioFile

class hierarchy:
from typing import Protocol

class Playable(Protocol):
def play(self) -> None:

Of course, just because an object satisfies a particular protocol (by providing required methods or
attributes) this does not mean it will simply work in all situations. It also has to fulfill that interface
in a way that makes sense in the overall system. It’s possible that the Cribbage class also has a

play () method, but doesn’t work with a media player.

An alternative is to define a new type that’s a union of the various types that are available. We

might do the following, for example:

type Playable = AudioFile | FlacFile

This defines a new type, Playable, that summarizes the available types with a name that can then

be used to define additional classes and objects. The | operator is the like the mathematical U

Chapter 3 97

operator used for sets: the Playable type is the union of the two types. This puts a lightweight
wrapper around the duck typing feature of Python.

Another useful feature of duck typing is that classes only need to provide those methods and
attributes that are actually being accessed. For example, if we needed to create a fake file object
from which we can read data, we could create a new object that has a read () method. We don’t
have to override the write() method if the code that is going to interact with the fake object will
not be writing. Duck typing doesn’t require implementing the entire interface of an object; it only

needs to fulfill the protocol that is actually used.

Recall

Here are some key points from this chapter:

« A central object-oriented design principle is inheritance: a subclass can inherit aspects of a
superclass, saving copy-and-paste programming. A subclass can extend the superclass to

add features or specialize the superclass in other ways.

« Multiple inheritance is a feature of Python. The most common form is a host class with
mixin class definitions. We can combine multiple classes leveraging the method resolution

order to handle common features such as initialization.

« Polymorphism lets us create multiple classes that provide alternative implementations for
fulfilling a contract. Because of Python’s duck typing rules, any classes that have the right

methods can substitute for each other.

Exercises

Look around you at some of the physical objects in your workspace and see if you can describe them
in an inheritance hierarchy. Humans have been dividing the world into taxonomies like this for
centuries, so it shouldn’t be difficult. Are there any non-obvious inheritance relationships between
classes of objects? If you were to model these objects in a computer application, what properties
and methods would they share? Which ones would have to be polymorphically overridden? What

properties would be completely different between them?

Now write some code. No, not for the physical hierarchy; that’s difficult because physical items
have more properties than methods. Think about a pet programming project you’ve wanted to

tackle in the past year, but never gotten around to. For whatever problem you want to solve, try

98 When Objects Are Alike

to think of the inheritance relationships and then implement them. Make sure that you also pay
attention to the sorts of relationships that you actually don’t need to use inheritance for. Are there
any places where you might want to use multiple inheritance? Are you sure? Can you see any
place where you would want to use a mixin? Try to knock together a quick prototype. It doesn’t
have to be useful or even partially working. You've seen how you can test code using python -i
already; just write some code and test it in the interactive interpreter. If it works, write some more.

If it doesn’t, fix it!

For an example application, refer to Chapter 1. The “Reading a big script” section shows a script
that does a lot of processing. We describe some classes that seem to be part of the script processing.
How can inheritance simplify these classes? What’s similar about the various sections of the

JSON-formatted documents? What’s distinct about them?

Summary

We’ve gone from simple inheritance, one of the most useful tools in the object-oriented programmer’s
toolbox, all the way through to multiple inheritance — one of the more complicated. Inheritance
can be used to add functionality to existing classes and built-in generics. Abstracting similar code
into a parent class can help increase maintainability. Methods on parent classes can be called using
the super() function, and argument lists must be formatted safely for these calls to work when

using multiple inheritance.

In the next chapter, we’ll cover the subtle art of handling exceptional circumstances.

Expecting the Unexpected

Software is rugged; computer systems, however, can be fragile. While the software is highly
predictable, the runtime context can provide unexpected inputs and situations. Devices fail, networks
are unreliable, and mere anarchy is let loose on our application. We need to have a way to handle

the spectrum of failures that plague complicated systems such as modern computers.

There are two broad approaches to dealing with the unforeseen. One approach is to return a
recognizable error-signaling value from a function. A value, such as None, could be used. Other
library functions can then be used by an application to retrieve details of the erroneous condition.
A variation on this theme is to pair the return value from an OS request with a success or failure
indicator. The other approach is to interrupt the normal, sequential execution of statements and
divert to statements designed to handle the exceptional situation. This second approach is what

Python does: it eliminates the need to check return values for errors.

In this chapter, we will study exceptions, special error objects raised when a normal response is

impossible. In particular, we will cover the following:
« How to cause an exception to occur
« How to recover when an exception has occurred

« How to handle different exception types in different ways

100 Expecting the Unexpected

+ Cleaning up when an exception has occurred
« Creating new types of exception
« Using the exception syntax for flow control

We'll start by looking at Python’s concept of an Exception, and how exceptions are raised and
handled.

Raising exceptions

Python’s normal behavior is to execute statements in the order they are found, either in a file or
interactively at the >>> prompt. A few statements, specifically if, while, and for, alter the simple
top-to-bottom sequence of statement execution. Additionally, an exception can break the sequential

flow of execution. When an exception is raised, it interrupts the sequential execution of statements.

In Python, the exception that’s raised is also an object. There are many different exception classes
available, and we can easily define more of our own. The one thing they all have in common is
that they inherit from a built-in class called BaseException. (As a practical matter, we're far more

interested in exceptions based on the Exception class.)

When an exception is raised, everything that was supposed to happen is preempted. Instead,

exception handling replaces normal processing.

The easiest way to cause an exception to occur is to do something silly. Chances are you’ve done
this already and seen the exception output. For example, any time Python encounters a line in your

program that it can’t understand, it raises the SyntaxError exception. Here’s a common one:

>>> print "hello world"
Traceback (most recent call last):

print "hello world"
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV)N

SyntaxExrroxr: Missing parentheses in call to 'print'. Did you mean
print(...)?

The print() function requires the arguments to be enclosed in parentheses. Note that we've used
. in place of some details of the tracback message that aren’t — for now — as interesting as the

final exception.

In addition to SyntaxError, some other common exceptions are shown in the following example:

Chapter 4

>>>x =570
Traceback (most recent call last):

=5/0

~~ A~

ZeroDivisionError: division by zero

>>> 1st = [1,2,3]
>>> print(1lst[3])
Traceback (most recent call last):

print(1lst[3])
~n AAN
IndexError: list index out of range
>>>]st + 2
Traceback (most recent call last):

TypeError: can only concatenate list (not "int") to list
>>>]st.add
Traceback (most recent call last):

1st.add
AttributeExrror: 'list' object has no attribute 'add'

>>> d = {'a': 'hello'}
>>> d['b']
Traceback (most recent call last):

d['b']

INYAVAVAVAV)N

KeyError: 'b'

>>> print(this_is_not_a_var)
Traceback (most recent call last):

print(this_is_not_a_var)

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN

NameError: name 'this_is_not_a_var' is not defined

With a little hand-waving, we can partition these exceptions into roughly three categories:

102 Expecting the Unexpected

+ Some exceptions are indicators of something being clearly wrong with the way we’re writing
our program. Exceptions such as SyntaxError and NameError mean we need to find the indi-
cated line number and fix the problem. An ImportError, for example, is either a misspelled

name or a library that hasn’t been added to the virtual environment.

« A few exceptions are indicators of something wrong in the Python runtime. As one example,
there’s a vague SystemError exception that can get raised when there are internal problems.
Sometimes a reboot of the computer will resolve the problem. Other times, it might mean

that it’s time to download and install a newer Python.

+ Most exceptions are design problems. We may fail to account for an edge case properly and
sometimes try to compute an average of an empty list. This will result in ZeroDivisionError.
When we find these, again, we’ll have to go to the indicated line number. But once we’ve
found the resulting exception, we’ll need to work backward from there to find out what
caused the problem that raised the exception. Somewhere there will be an object in an

unexpected, not-designed-for state.

The bulk of these exceptions tend to arise near our program’s interfaces. Any user input or OS
request, including file operations, can encounter problems with the resources outside our program,

leading to exceptions. We can subdivide these design problems further into two subgroups:

« External objects in an unusual or unanticipated state. This is common with files that aren’t
found because the path was spelled incorrectly, or directories that already exist because our
application crashed earlier and we restarted it. These will often be some kind of 0SError
with a reasonably clear root cause. File-related problems will be visible as an (IOError) or

one of its many subclasses. We need to expand our design to cover these cases, also.

« And there’s also the (relatively small) category of hard-to-pin-down chaos. In the final
analysis, a computer system is a lot of interconnected devices and any one of the components
could behave badly. These are hard to anticipate, and it’s harder still to plan a recovery
strategy. For example, when working with a small IoT computer, there are few parts, but it
may be installed in a challenging physical environment. When working with an enterprise
server farm with thousands of components, a 0.1% failure rate means something is always
broken, and a root cause may be hardware instead of our programming. We may need to

expand our logging and error display to expose the underlying problem.

You may have noticed that most of Python’s built-in exceptions end with the name Exror. In Python,

the words error and exception are used almost interchangeably. Errors are sometimes considered

Chapter 4 103

more dire than exceptions, but they are dealt with in the same way.

All error classes in the preceding example have Exception as their base class. The SystemExit
exception is an example of the few exceptions based on BaseException, instead of Exception.
There’s no sensible way for any code we write to handle this exception; this exception is used

internally to make the Python runtime stop.

Raising an exception

We’ll get to responding to such exceptions in a minute. First, we need to discover what we should
do if we're writing a program that needs to inform the user or a calling function of some exception.
An example is invalid input values. We can use the same mechanism for notification that Python

uses. Here’s a simple class that adds items to a list only if they are even-numbered integers:

class EvenOnly(list[int]):
def append(self, value: int) -> None:
match value:
case int():
if value % 2 != 0:
raise ValueError("Only even numbers can be added")
case _
raise TypeError("Only integers can be added")
super() .append(value)

This class extends the built-in 1ist type, as we discussed in Chapter 2. The type hint suggests our
intent to create a list of integer objects only. To do the appending, we’ve overridden the append
method to check two conditions that ensure each item is an even integer. We first check whether
the input is an instance of the int type. (This can also be done with the isinstance() function.)
Then we use the modulo operator to ensure it is divisible by two. If either of the two conditions is

not met, the raise statement causes an exception to occur.

The raise keyword is followed by the object being raised as an exception. In the preceding example,
two objects are constructed from the built-in TypeError and ValueError classes. The raised object
could just as easily be an instance of a new Exception class we create ourselves (we’ll see how
shortly), an exception that was defined elsewhere, or even an existing Exception object that has

been previously raised and handled.

If we test this class in the Python interpreter, we can see that it is outputting useful error information

104 Expecting the Unexpected

when exceptions occur:

>>> e = EvenOnly()
>>> e.append("a string")
Traceback (most recent call last):

TypeError: Only integers can be added

>>> e.append(3)
Traceback (most recent call last):

ValueError: Only even numbers can be added
>>> e.append(2)

While this class is effective for demonstrating exceptions in action, it isn’t very good at its job. It is
still possible to get other values into the list using index notation, slice notation, or the insert()
method. These additional behaviors can be avoided by overriding other appropriate methods, some
of which are magic double-underscore methods. To be really complete, we’d need to override
methods such as extend(), insert(), __setittem__(), and even __init__() to be sure things

start off correctly.

The effects of an exception

When an exception is raised, it appears to stop program execution immediately. Any lines that
were supposed to run after the exception is raised are not executed, and unless the exception is
handled by an except clause, the program will exit with an error message. We’ll examine unhandled

exceptions first, and then take a close look at handling exceptions.

Take a look at this basic function:

from typing import NoReturn

def never_returns() -> NoReturn:
print("I am about to raise an exception")
raise Exception("This is always raised")
print("This line will never execute")
return "I won't be returned"

We've included the NoReturn type hint for this function. This helps ease mypy’s worry that there’s

Chapter 4 105

no way for this function to reach the end and return a string value. The type hint states, formally,

that the function isn’t expected to reach the return statement at the end.

If we execute this function, we see that the first print() call is executed and then the exception is
raised. The second print() function call is never executed, nor is the return statement. Here’s

what it looks like:

>>> never_returns()
Traceback (most recent call last):

never_returns()

raise Exception("This is always raised")
Exception: This is always raised

Furthermore, if we have a function that calls another function that raises an exception, nothing
is executed in the first function after the point where the second function’s exception was raised.
Raising an exception stops all execution right up through the function call stack until it is either
handled or forces the interpreter to exit. To demonstrate, let’s add a second function that calls the

never_returns () function:

def call_exceptor() -> None:
print("call_exceptor starts here...")
never_returns()
print("an exception was raised...")
print("...so these lines don't run")

When we call this function, we see that the first print statement executes, as well as the first line

in the never_returns () function. But once the exception is raised, nothing else executes:

>>> call_exceptor()
Traceback (most recent call last):

call_exceptor()

never_returns()

raise Exception("This is always raised")
Exception: This is always raised

106 Expecting the Unexpected

Note that some clever reasoning is required to recognize what the call to never_returns() does
to the processing in the call_exceptor() function. Based on previous examples, it may seem
like call_exceptox() is better described as a NoReturn function. When we try this, we can get a
warning from mypy. It’s far from obvious to a software tool that never_returns() always raises
an exception. The amount of careful reasoning about the code would be extraordinary to discover

an aspect that’s a symptom of bad design.

We can control how exceptions propagate from the initial raise statement. We can react to and deal
with the exception inside either of the functions in the call stack. To understand this idea, look at
the output from the preceding unhandled exception, called a traceback. The list of functions shows
the call stack. The command line (“<module>” is the name used when there’s no input file) called
the call_exceptor() function. Then the call_exceptor() function called the never_returns()

function. Inside the never_returns() function, the exception is raised.

An unhandled exception propagates up through the call stack. The exception started in the
never_returns () function, and was ignored. It wound up in the call_exceptor () function, where
it was also ignored. From there, it went up one more level to the main interpreter, which, not

knowing what else to do with it, gave up and printed the traceback object.

Interactive Python returns to the >>> prompt. When running a script, the interpreter stops.

Handling exceptions

Now let’s look at the tails side of the exception coin. When an exception is raised, how should our
code react to or recover from it? We handle exceptions by wrapping any code that might throw an

exception inside a try. . .except clause. The most basic syntax looks like this:

def handler() -> None:
try:
never_returns()
print("Never executed")
except Exception as ex:
print(f"I caught an exception: {ex!r}")
print("Executed after the exception")

If we run this simple script using our existing never_returns() function — which, as we know

very well, always throws an exception — we get this output:

Chapter 4 107

>>> handler ()
I am about to raise an exception

I caught an exception: Exception('This is always raised')
Executed after the exception

The never_returns () function happily informs us that it is about to raise an exception and raises it.
The handler () function’s except clause catches the exception. Once caught, we are able to clean
up after ourselves (in this case, by outputting that we are handling the situation), and continue on
our way. The remainder of the code in the never_returns() function remains unexecuted, but the

code in the handler() function after the try: statement is able to recover and continue.

Note the indentation around try and except. The try clause wraps any code that might throw an
exception we want to handle. The except clause is then back on the same indentation level as the
try line. Any code to handle the exception is indented inside the except clause. Then normal code

resumes at the original indentation level.

The preceding code uses the overly broad Exception class to match any type of exception. What if we
were writing some code that could raise either TypeExror or ZeroDivisionExrror? We might need
to catch ZeroDivisionError because it reflects a known object state, but let any other exceptions
propagate to the console because they reflect bugs we need to catch and kill. Can you guess the

syntax?

Here’s a rather silly function that does just that:

def funny_division(divisor: float) -> str | float:
try:
return 100 / divisor
except ZeroDivisionError:
return "Zero is not a good idea!"

This function does a simple computation. We’ve provided the type hint of float for the divisor
parameter. At runtime, the function using this can also provide an integer, and ordinary Python
type conversions will work. The type-checking tools are aware of how integers are promoted to

floats when needed, and how the true division operator / returns a float result.

We do, however, have to be very clear about the return types. If an exception is not raised, we’ll
compute and return a floating result. If there is a ZeroDivisionError exception, it will be handled,

and we’ll return a string result. This is a union of type types, a subject we’ll return to in Chapter 7.

108 Expecting the Unexpected

What about other types of exceptions? Let’s try it and see:

>>> print(funny_division(0Q))

Zexro is not a good ideal!

>>> print(funny_division(50.0))
2.0

>>> print(funny_division("hello"))
Traceback (most recent call last):

print(funny_division("hello"))
VAV AY AV AYAYAYAYAVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAN

return 100 / divisor
INYNYNINY \UNYNPNPNINPN PPN

TypeExrror: unsupported operand type(s) for /: 'int' and 'str

The first line of output shows that if we enter @, we get properly mocked. If we call with a valid
number, it operates correctly. Yet if we enter a string (you were wondering how to get a TypeError,

weren’t you?), it fails with an unhandled exception.

Starting with 3.14, Python will issue warnings about the “bare except” syntax.
Using except: with no exception class to match will be deprecated because it

\@/’ tends to prevent an application from simply crashing when it should. For more
information on the removal of this feature, see PEP 760, (https://peps.python.
org/pep-0760/).

The bare except: syntax is actually the same as using except BaseException:,

which attempts to handle system-level exceptions that are often impossible to

A recover from. Indeed, matching this exception base class can make it impossible to
H crash your application when it’s misbehaving. It’s possible, for example, to catch
the Ctrl + C keyboard sequence that normally stops a program from running;

doing this is a very bad idea.

We can even name two or more different exceptions and handle them with the same code. Here’s an
example that raises three different types of exceptions. It handles TypeError and ZeroDivisionErroxr
with the same exception handler, but it may also raise a ValueError error if you supply the number

13:

https://peps.python.org/pep-0760/
https://peps.python.org/pep-0760/

Chapter 4 109

def funnier_division(divisor: int) -> str | float:
try:
if divisor == 13:
raise ValueError("13 is an unlucky number")
return 100 / divisor
except (ZeroDivisionError, TypeError):
return "Enter a number other than zero"

We’ve included multiple exception classes in the except clause. This lets us handle a variety of

conditions with a common handler. Here’s how we can test this with a bunch of different values:

>>> for val in (@, "hello", 50.0):
print(f"Testing {val!r}:", end=" ")
print(funnier_division(val))

Testing @: Enter a number other than zero
Testing 'hello': Enter a number other than zero
Testing 50.0: 2.0

>>> val = 13

>>> print(funnier_division(val))

Traceback (most recent call last):

print(funnier_division(val))
VAY

raise ValueError("13 is an unlucky number")
ValueError: 13 is an unlucky number

The for statement iterates over several test inputs and prints the results. If you're wondering about
that end parameter in the print function, it just turns the default trailing newline into a space so

that it’s joined with the output from the next line.

The number 0 and the string are both caught by the except clause, and a suitable error message is
printed. The exception from the number 13 is not caught because it is a ValueExrror, which was
not included in the types of exceptions being handled. How do we catch different exceptions and

do different things with them?

We don’t need any new syntax to deal with the multiple-handler case. It’s possible to stack the

except clauses, and only the first match will be executed.

110 Expecting the Unexpected

There is one other thing we can do in a handler: we can re-raise the current exception. This lets
us do a partial intervention — maybe write some helpful debugging context — before allowing
the exception to bubble up to a handler. The raise keyword, with no arguments, will re-raise the

current exception. Observe the following code:

def funniest_division(divisor: int) -> str | float:
try:
if divisor == 13:
raise ValueError("13 is an unlucky number")
return 100 / divisor
except ZeroDivisionError:
return "Enter a number other than zero"
except TypeError:
return "Enter a numerical value"
except ValueError:
print("No, No, not 13!")
raise

The last line re-raises the ValueError error. After outputting No, No, not 13!, it will raise the

exception again. Because it’s unhandled, we’ll still get the original stack trace on the console.

If we stack exception clauses like we did in the preceding example, only the first matching clause
will be run, even if more than one of them fits. How can more than one clause match? Remember
that exceptions are objects, and can therefore be subclassed. As we’ll see in the next section, most
exceptions extend the Exception class. If we have an except clause to match Exception before
we have a clause to match TypeError, then only the Exception handler will be executed. We need

to stack them from most specific to most generic.

This can come in handy in cases where we want to handle some exceptions specifically, and then
handle all remaining exceptions as a more general case. We can list Exception in its own clause

after catching all the specific exceptions and handle the general case there.

Often, when we catch an exception, we need a reference to the Exception object itself. This most
often happens when we define our own exceptions with custom arguments, but can also be relevant
with standard exceptions. Most exception classes accept a set of arguments in their constructor,
and we might want to access those attributes in the exception handler. If we define our own
Exception class, we can even call custom methods on it when we catch it. The syntax for capturing

an exception as a variable uses the as keyword:

Chapter 4 111

>>> try;
raise ValueError("This is an argument")
. except ValueError as e:
print (f"The exception arguments were {e.args}")

The exception arguments were ('This is an argument',)

When we run this snippet, it prints out the string argument that we passed into ValueError upon
initialization.

We’ve seen several variations on the syntax for handling exceptions. We have another design
feature: execute code whether or not an exception has occurred. We also haven’t seen how to
specify code that should be executed only if an exception does not occur. Two more keywords,

finally and else, provide some additional execution paths. Neither one takes any extra arguments.

We'll show an example with the finally clause. For the most part, we often use context managers
instead of exception blocks as a cleaner way to implement a finalization that occurs whether or not
an exception interrupted processing. The idea is to encapsulate responsibility for finalization in the

context manager.

The following example iterates through a number of exception classes, raising an instance of each.
Then some not-so-complicated exception-handling code runs that illustrates the newly introduced

syntax:
some_exceptions = [ValueError, TypeError, IndexError, None]

for choice in some_exceptions:
try:
print(f"\nRaising {choice}")
if choice:
raise choice("An error")
else:
print("no exception raised")
except ValueError:
print("Caught a ValueError")
except TypeError:
print("Caught a TypeError")
except Exception as e:
print(f"Caught some other error: {e.__class__.__name__}")
else:

112 Expecting the Unexpected

print("This code called if there is no exception")
finally:
print("This cleanup code is always called")

If we run this example, which illustrates almost every conceivable exception-handling scenario,

we’ll see the following output:

[pycon]

Raising <class 'ValueErroxr'>
Caught a ValueError

This cleanup code is always called

Raising <class 'TypeError'>
Caught a TypeError
This cleanup code is always called

Raising <class 'IndexError'>
Caught some other error: IndexErrox
This cleanup code is always called

Raising None

no exception raised

This code called if there is no exception
This cleanup code is always called

Note how the print() function in the finally clause is executed no matter what happens. This
is one way to perform certain tasks after our code has finished running (even if an exception has

occurred). Some common examples include the following:
« Cleaning up an open database connection
+ Closing an open file
+ Sending a closing handshake over the network
All of these are more commonly handled with context managers, one of the topics of Chapter 9.

While obscure, the finally clause is executed after the return statement inside a try clause. While

this can be exploited for post-return processing, it can also be confusing to folks reading the code.

Also, pay attention to the output when no exception is raised: both the else and the finally

clauses are executed. The else clause will not be executed if an exception is caught and handled.

Chapter 4 113

The finally clause is always executed. We’ll see more on this when we discuss using exceptions

as flow control later.

Clearly, the else, and finally clauses are optional. It turns out you can have a finally clause
without any other clauses to specify some processing that will happen even if there’s an unhandled

exception. As noted earlier, a context manager is a less tricky way to do this kind of thing.

\ Make sure the order of the except clauses has classes start with the most specific

,@ subclasses and end with the most generic superclasses.

{1

The exception hierarchy

We’ve already seen several of the most common built-in exceptions. As we noticed earlier, most
exceptions are subclasses of the Exception class. But this is not true of all exceptions. The Exception

class actually extends a class called BaseException.

There are three key built-in exception classes, SystemExit, and KeyboardInterrupt, GeneratorExit,
that derive directly from the BaseException class instead of the Exception class. A fourth class,
BaseExceptionGroup, is also defined here; handling this isn’t fraught with complications like the

other three direct subclassess of BaseException.

The SystemExit exception is raised whenever the program exits naturally. This is typically raised
by the sys.exit() function; for example, when the user selected an exit menu item, clicked the
Close button on a window, or entered a command to shut down a server, or the OS sent a signal
to the application to terminate. This exception is designed to simply ignore the processing that’s

going on and exit.

If we try to handle the SystemExit exception, we must re-raise it, since silencing it could stop the
program from exiting. Imagine a web service with a bug that is holding database locks and can’t be

stopped without rebooting the server.

The KeyboardInterrupt exception is common in command-line programs. It is raised when the
user explicitly interrupts program execution with an OS-dependent key combination (normally,
Ctrl + C). For Linux and macOS users, the kill -2 <pid> command will also work. This is a
standard way for the user to deliberately interrupt a running program and, like the SystemExit
exception, it should almost always respond by terminating the program. Silencing the exception

may make a badly behaving program unstoppable without a reboot.

114 Expecting the Unexpected

There are more OS signals available. The SIGINT signal sent by Ctrl + C raises an exception by
default. Several other signals are ignored by default. The signal module provides ways to respond

to the other OS signals.

As with the previous two, the GeneratorExit exception isn’t really an error. It’s a signal that a
generator or coroutine is finishing. Generators and coroutines can’t return a special value, so they

raise an exception.

Figure 4.1 illustrates the exception hierarchy:

BaseException

SystemExit KeyboardInterrupt Exception

Most Other Exceptions

Figure 4.1: Exception hierarchy

Almost universally, the most general kind of exception is the Exception class. Avoid the BaseException

class, since it’s more likely to cause problems than solve them.

Defining our own exceptions

Occasionally, when we want to raise an exception, we find that none of the built-in exceptions are
suitable. The distinction is often focused on how applications must handle the exception; when we

introduce a new exception it must be because there will be distinct processing in a handler.

There’s no good reason to define an exception that’s handled exactly like ValueExror; we can use
ValueError. Luckily, it’s trivial to define new exception subclasses of our own. The name of the
class is usually designed to communicate what went wrong, and we can provide arbitrary arguments

in the initializer to include additional information.

Chapter 4 115

All we have to do is inherit from the Exception class or one of the existing exceptions that’s

semantically similar. We don’t even have to add any content to the class!

Here’s a simple exception we might use in a banking application:

class InvalidWithdrawal_1(ValueExrror):
pass

Here’s how it looks when we raise this exception with a string argument value:

>>> raise InvalidWithdrawal_1("You don't have $50 in your account")
Traceback (most recent call last):

banking.InvalidWithdrawal_1: You don't have $5@0 in your account

We are able to pass an arbitrary number of arguments into the exception. Often a string message
is used, but any object that might be useful in a later exception handler can be stored. The
Exception.__init_ () method is designed to accept any arguments and store them as a tuple
in an attribute named args. This makes exceptions easier to define without needing to override

init ().

Of course, if we do want to customize the initializer, we are free to do so. Here’s a revision to the
above exception whose initializer accepts the current balance and the amount the user wants to

withdraw. In addition, it adds a method to calculate how overdrawn the request is:

from decimal import Decimal

class InvalidWithdrawal(ValueError):
def __init_ (self, balance: Decimal, amount: Decimal) -> None:
super().__init__(f"account doesn't have ${amount}")
self.amount = amount
self.balance = balance

def overage(self) -> Decimal:
return self.amount - self.balance

Since we’re working with currency, we’ve imported the Decimal class of numbers. We can’t use

Python’s default intor float types for money where there are a fixed number of decimal places

116 Expecting the Unexpected

and exquisitely complex rounding rules that assume exact decimal arithmetic.

(Also note that an account number or any other personally identifiable information, or PII, is
not part of the exception. Bankers frown on using PII in a way that could be exposed in a log or a

traceback message.)

Here’s an example of creating an instance of this exception:

>>> raise InvalidWithdrawal (Decimal('28.63'), Decimal('42.00'))
Traceback (most recent call last):

banking.InvalidWithdrawal: account doesn't have $42.00

Let’s assume there’s a do_transfer() function that either computes the new balance or raises an
exception if the transfer is invalid. Here’s how we would handle an Invalidwithdrawal exception

if one was raised:

>>> balance = Decimal('28.63"')
>>> transfer = Decimal('42.00')
>>> try:
new_balance = do_transfer(balance, transfer)
. except InvalidWithdrawal as ex:
print("I'm sorry, but your withdrawal is
"more than your balance by "
f"${ex.overage()}")

I'm sorry, but your withdrawal is more than your balance by $13.37

Here we see the as keyword to save the exception in a local variable, ex. By convention, most
Python coders assign the exception a variable such as ex, exc, or exception; although, as usual,

you are free to call it the_exception_raised_above or dogs_breakfast if you prefer.

There are many reasons for defining our own exceptions. It is often useful to add information to
the exception or log it in some way. But the utility of custom exceptions truly comes to light when
creating a framework, library, or API that is intended for access by other programmers. In that case,
be careful to ensure your code is raising exceptions that make sense to the client programmer. Here

are some criteria:

« They should clearly describe what went on. The KeyError exception, for example, provides

the key that could not be found.

Chapter 4 117

« The client programmer should be able to easily see how to fix the error (if it reflects a bug in

their code) or handle the exception (if it’s a situation they need to be made aware of).

« The handling should be distinct from other exceptions. If the handling is the same as an

existing exception, reusing the existing exception is best.

Now that we’ve looked at raising exceptions and defining new exceptions, we can look at some of
the design considerations that surround exceptional data and responding to problems. There are a
number of alternative design choices, and we’ll start with the idea that exceptions, in Python, can

be used for a number of things that aren’t — strictly speaking — erroneous.

Exceptions aren’t exceptional

Novice programmers tend to think of exceptions as only useful for really profoundly earth-shattering,
program-ending circumstances. However, the definition of exceptional circumstances can be subject

to interpretation. Consider the following two functions:

def divide_with_exception(dividend: int, divisor: int) -> None:
try:
print(f"{dividend / divisor=}")
except ZeroDivisionError:
print("You can't divide by zero")

def divide_with_if(dividend: int, divisor: int) -> None:
if divisor ==
print("You can't divide by zero")
else:
print(f"{dividend / divisor=}")

These two functions behave identically. If divisor is 0, an error message is printed; otherwise, a
message printing the result of the division is displayed. In the second function, divide_with_if(),
the test for a valid division is a relatively simple-looking expression, divisor == @. In some cases,
the test for valid data can be rather complex. In some cases, it may involve computing some
intermediate results. In the worst cases, the test for “will this work?” involves using a number of
other methods of a class to — in effect — dry-run the operation to see whether there would be an
error along the way. This amounts to doing the work twice: once to see whether it’s feasible, then

doing it with intent to save the results.

Python programmers prefer to avoid doing the work twice. They tend to follow a model summarized

118 Expecting the Unexpected

by “it’s easier to ask for forgiveness than permission,” sometimes abbreviated EAFP. The point
is to execute code and then deal with anything that goes wrong. The alternative is described as
“look before you leap,” often abbreviated LBYL. This is generally less popular. The main reason
for this is it shouldn’t be necessary to burn CPU cycles looking for an unusual situation that is rare.

Python classes generally check for bad data; writing a redundant check is clearly wasteful.

This is why Python programmers use exceptions for all kinds of exceptional circumstances, even if
those circumstances are only a little bit exceptional. Taking this argument further, exception syntax
can be effective for flow control. A try statement is somewhat like an if statement, with exceptions
used for decision-making. It’s common practice to simply retrieve an item from a dictionary or a

list without checking first to see whether the key exists or the list index is valid.

For an extended example, imagine an inventory application. When a customer makes a purchase,
the item can either be available or be out of stock. A method will update the inventory counts
when the item is available. Being out of stock is a perfectly normal thing to happen in an inventory
application. It is certainly not an erroneous circumstance. But what does a function do when an
item is out of stock? Return a string saying “out of stock”? Return a special error code? These uses
of code strings or numeric values can be messy. Further, the collaborating functions must check for

these coded return values.

Instead, we can raise an OutOfStock exception and use the try statement to direct program flow

control.

In addition, we want to make sure we don’t sell the same item to two different customers, or sell an
item that isn’t in stock yet. One way to facilitate this is to lock each type of item to ensure only
one person can update it at a time. The user must lock the item, manipulate the item (purchase,
add stock, count items left...), and then unlock the item. (This is, in effect, a context manager, one

subject of Chapter 9.)
Here’s an incomplete Inventory example. We’ll start with two exceptions, then show a class with

with docstrings that describe what some of the methods should do:

class OutOfStock(Exception):
pass

class InvalidItemType(Exception):
pass

Chapter 4 119

class Inventory:
def __init__ (self, stock: list[ItemType]) -> None:
pass

def lock(self, item_type: ItemType) -> None:
"""Context Entry.
Lock the item type so nobody else can manipulate the
inventory while we're working."""
pass

def unlock(self, item_type: ItemType) -> None:
"""Context Exit.
Unlock the item type."""
pass

def purchase(self, item_type: ItemType) -> int:
"""If the item is not locked, raise an
ValueError because someting went wrong.
If the item_type does not exist,
raise InvalidItemType.
If the item is currently out of stock,
raise OutOfStock.
If the item is available,
subtract one item; return the number of items left.

Mocked results.

if item_type.name == "Widget":
raise OutOfStock(item_type)

elif item_type.name == "Gadget":
return 42

else:

raise InvalidItemType(item_type)

We could hand this object prototype to a developer and have them implement the methods to do
exactly as they say while we work on the code needed to make a purchase. We’ll use Python’s
robust exception handling to consider different processing paths, depending on how the purchase
was made. We can even write a test case to be sure that there’s no question about how this class

should work.

Here’s a definition of ItemType, just to round out the example:

120 Expecting the Unexpected

class ItemType:
def _ _init_ (self, name: str) -> None:
self.name = name
self.on_hand = 0

Here’s an interactive session using this Inventory class:

>>> widget ItemType("Widget")
>>> gadget ItemType("Gadget")
>>> inv = Inventory([widget, gadget])

item_to_buy = widget
inv.lock(item_to_buy)
try:
. num_left = inv.purchase(item_to_buy)
. except InvalidItemType:
. print(f"Sorry, we don't sell {item_to_buy.name}")
. except OutOfStock:
print("Sorry, that item is out of stock.")
. else:
.. print(f"Purchase complete. There are {num_left} {item_to_buy.name}s
left")
. finally:
inv.unlock(item_to_buy)

Sorry, that item is out of stock.

All the possible exception-handling clauses are used to ensure that the correct actions happen at
the correct time. Even though the Out0fStock exception is not a terribly exceptional circumstance,
we are able to use an exception to handle it suitably. This same code could be written with an

if...elif...else structure, but it wouldn’t be as easy to read or maintain.

We can also use exceptions to pass messages between different methods. For example, if we wanted
to inform the customer as to what date the item is expected to be in stock again, we could ensure
our OutOfStock class requires a back_in_stock parameter when it is constructed. Then, when we
handle the exception, we can check that value and provide additional information to the customer.
The information attached to the object can be easily passed between two different parts of the
program. The exception could even provide a method that instructs the inventory object to reorder

or backorder an item.

Chapter 4 121

Using exceptions for flow control can make for some handy program designs. The important thing
to take from this discussion is that exceptions are not a bad thing that we should try to avoid. Having
an exception occur does not mean that you should have prevented this exceptional circumstance
from happening. Rather, it is a powerful way to communicate information between two sections of

code that may not be directly calling each other.

Recall

Some key points in this chapter are the following:

« Raising an exception happens when something goes wrong. We looked at division by zero

as an example. Exceptions can also be raised with the raise statement.

« The effects of an exception are to interrupt the normal sequential execution of statements.
It saves us from having to write a lot of if statements to check to see whether things can

possibly work or whether something actually failed.

« Handling exceptions is done with the try: statement, which has an except: clause for each

kind of exception we want to handle.

« The exception hierarchy follows object-oriented design patterns to define a number of
subclasses of the Exception class we can work with. Some additional exceptions, SystemExit
and KeyboardInterrupt, are not subclasses of the Exception class; handling these exceptions

can introduce risks and doesn’t solve very many problems, so we generally ignore them.

+ Defining our own exceptions is a matter of extending the Exception class. This makes it

possible to define exceptions with very specific semantics.

Exercises

If you've never dealt with exceptions before, the first thing you need to do is look at any old Python
code you’ve written and notice if there are places you should have been handling exceptions. How
would you handle them? Do you need to handle them at all? Sometimes, letting the exception
propagate to the console is the best way to communicate to the user, especially if the user is also
the script’s coder. Sometimes, you can recover from the error and allow the program to continue.
Sometimes, you can only reformat the error into something the user can understand and display it

to them.

122 Expecting the Unexpected

Some common places to look are file I/O (is it possible your code will try to read a file that doesn’t
exist?), mathematical expressions (is it possible that a value you are dividing by is zero?), list indices

(is the list empty?), and dictionaries (does the key exist?).

Ask yourself whether you should ignore the problem, handle it by checking values first, or handle
it with an exception. Pay special attention to areas where you might have used finally and else

to ensure the correct code is executed under all conditions.

Try to think of places in your code where you can raise exceptions. It can be in code you’ve written
or are working on, or you can write a new project as an exercise. You’ll probably have the best
luck designing a small framework or API that is meant to be used by other people; exceptions are
a terrific communication tool between your code and someone else’s. Remember to design and
document any self-raised exceptions as part of the API, or they won’t know whether or how to

handle them!

For an example application, refer to Chapter 1. The “Reading a big script” section shows a script
that does a lot of processing. What kinds of things can go wrong in this processing? Certainly, files
can be unreadable. What about missing keys because of unexpected JSON structures? What about
unexpected values for the outcomes of various tests? What kinds of exceptions can be handled, and

what exceptions should stop the processing?

Summary

In this chapter, we went into the gritty details of raising, handling, defining, and manipulating
exceptions. Exceptions are a powerful way to communicate unusual circumstances or error condi-
tions without requiring a calling function to explicitly check return values. There are many built-in
exceptions, and raising them is trivially easy. There are several different syntaxes for handling

different exception events.

In the next chapter, everything we’ve studied so far will come together as we discuss how object-

oriented programming principles and structures should best be applied in Python applications.

Chapter 4 123

Join our community Discord space

Join our Python Discord workspace to discuss and know more about the book: https://packt.1i

nk/dHrHU

=] T [u]

https://packt.link/dHrHU
https://packt.link/dHrHU

When to Use
Object-Oriented
Programming

In previous chapters, we’ve covered many of the defining features of object-oriented programming.
We now know some principles and paradigms of object-oriented design, and we’ve covered the

syntax of object-oriented programming in Python.

Yet, we don’t know exactly how and, especially, when to utilize these principles and syntax in
practice. In this chapter, we’ll discuss some useful applications of the knowledge we’ve gained,

looking at some new topics along the way:
« How to recognize objects
« Data and behaviors, once again
« Wrapping data behaviors using properties

« The Don’t Repeat Yourself principle and avoiding repetition

126 When to Use Object-Oriented Programming

We'll start this chapter with a close look at the nature of objects and their internal state. There are

cases when there’s no state change, and a class definition isn’t desirable.

Treat objects as objects

This may seem obvious: you should generally give separate objects in your problem domain a
special class in your code. We’ve seen examples of this in the examples in previous chapters: first,

we identify objects in the problem, and then model their data and behaviors.

Identifying objects is a very important task in object-oriented analysis and programming. But it
isn’t always as easy as counting the nouns in short paragraphs that, frankly, the authors have
constructed explicitly for that purpose. Remember, objects are things that have both data and
behavior. If we are working only with data, we are often better off storing it in a list, set, dictionary,
or other Python data structure (which we’ll be covering thoroughly in Chapter 8). On the other

hand, if we are working only with behavior, but no stored data, a simple function is more suitable.

An object, however, has both data and behavior. Proficient Python programmers use built-in data
structures unless (or until) there is an obvious need to define a class. There is no reason to add an
extra level of complexity if it doesn’t help organize our code. On the other hand, the need is not

always self-evident.

We can often start our Python programs by storing data in a few variables. As the program expands,
we will later find that we are passing the same set of related variables to a set of functions. This is

the time to think about grouping both variables and functions into a class.

For example, if we are designing a program to model polygons in two-dimensional space, we might
start with each polygon represented as a list of points. The points would be modeled as two tuples
(%, y) describing where that point is located. This is all data, stored in a set of nested data structures

(specifically, a list of tuples). We can (and often do) start hacking at the command prompt:

>>> square = [(1,1), (1,2), (2,2), (2,1)]

Now, if we want to calculate the distance around the perimeter of the polygon, we need to sum the
distances between each point. To do this, we need a function to calculate the distance between two

points. Here are two such functions:

Chapter 5 127

>>> from math import hypot

>>> def distance(p_1, p_2):
return hypot(p_1[@] - p_2[@], p_1[1] - p_2[1])

>>> def perimeter(polygon):
pairs = zip(polygon, polygon[1l:] + polygon[:1])
return sum(
distance(pl, p2) for pl, p2 in pairs

We can exercise the functions to check our work:

>>> perimeter(square)

4.0

This is a start, but it’s not completely descriptive of the problem domain. With some study, we can
work out what type the value of polygon might be. We need to read the entire batch of code to see

how the two functions work together.

We can add type hints to help clarify the intent behind each function. It helps to switch to writing a
module based on the results of experiments at the >>> REPL prompt. The result looks like this:

from math import hypot

type Point = tuple[float, float]

def distance(p_1l: Point, p_2: Point) -> float:
return hypot(p_1[0] - p_2[@], p_1[1] - p_2[1])

type Polygon = list[Point]

def perimeter(polygon: Polygon) -> float:
pairs = zip(polygon, polygon[1l:] + polygon[:1])
return sum(distance(pl, p2) for pl, p2 in pairs)

We’ve added two type definitions, Point and Polygon, to help clarify our intentions. The definition

of Point shows how we’ll use the built-in tuple class to contain two floating-point values. The

128 When to Use Object-Oriented Programming

definition of Polygon shows how the built-in list class builds on the Point class. (Both of these

hints are examples of generic types, one of the topics of Chapter 7.)

Now, as object-oriented programmers, we clearly recognize that a polygon class could encapsulate
the list of points (data) and the perimeter function (behavior). Further, a Point class, such as we
defined in Chapter 2, might encapsulate the x and y coordinates and the distance method. The

question is: is it valuable to do this?

For the previous code, maybe yes, maybe no. With our recent experience in object-oriented

principles, we can write an object-oriented version in record time. Let’s compare them as follows:

from math import hypot

class Point:
def __init_ (self, x: float, y: float) -> None:
self.x = x
self.y =y

def distance(self, other: "Point") -> float:
return hypot(self.x - other.x, self.y - other.y)

class Polygon:
def _ _init_ (self) -> None:
self.vertices: list[Point] = []

def add_point(self, point: Point) -> None:
self.vertices.append(point)

def perimeter(self) -> float:
pairs = zip(self.vertices, self.vertices[1l:] + self.vertices[:1])
return sum(pl.distance(p2) for pl, p2 in pairs)

There seems to be almost twice as much code here as there was in our earlier version, although
we could argue that the add_point () method is not strictly necessary. We could also try to insist
on using _vertices to discourage the use of the attribute, but the use of leading _ variable names

doesn’t seem to really solve any problems we might have.

Now, to understand the differences between the two classes a little better, let’s compare the two

APIs in use. Here’s how to calculate the perimeter of a square using the object-oriented code:

Chapter 5 129

square = Polygon()
square.add_point(Point
square.add_point(Point

square.add_point(Point
square.add_point (Point
square.perimeter()

That’s fairly succinct and easy to read, you might think, but let’s compare it to the function-based

code:

>>> square = [(1,1), (1,2), (2,2), (2,1)]

>>> perimeter(square)
4.0

Hmm, maybe the object-oriented API isn’t so compact! Our first, hacked-in version is the shortest.
How do we know what the list of tuples is supposed to represent? How do we remember what kind
of object we’re supposed to pass into the perimeter function? We needed some documentation to

explain how the first set of functions should be used.
We haven’t added docstrings, but you can see how the volume of code grows as we strive for clarity.

Code length is not a good indicator of code complexity. Some programmers get hung up on
complicated one-liners that do an incredible amount of work in one line of code. This can be a fun
exercise, but the result is often unreadable, even to the original author the following day. Minimizing

the amount of code can make a program easier to read, but there are limits.

\ No one wins at code golf.

\ 7

-

E Minimizing the volume of code is rarely desirable.

Luckily, this trade-off isn’t necessary. We can make the object-oriented Polygon API as easy to use
as the functional implementation. All we have to do is alter our Polygon class so that it can be

constructed with multiple points.

Let’s give it an initializer that accepts a list of Point objects:

130 When to Use Object-Oriented Programming

from collections.abc import Iterable

class Polygon_2:
def __init_ (self, vertices: Iterable[Point] | None = None) -> None:
self.vertices = list(vertices) if vertices else []

def perimeter(self) -> float:
pairs = zip(self.vertices, self.vertices[1l:] + self.vertices[:1])
return sum(pl.distance(p2) for pl, p2 in pairs)

This seems to improve things considerably. We can now use this class like the original function

definitions:

>>> square = Polygon_2(
[Point(1,1), Point(1,2), Point(2,2), Point(2,1)]

)
>>> square.perimeter()
4.0

It’s handy to have the details of the individual method definitions. We’ve built an API that’s close
to the original, succinct set of definitions. We’ve added enough formality to be confident the code is

likely to work before we even start putting test cases together.

Let’s take one more step. Let’s allow it to accept tuples too, and we can construct the Point objects

ourselves, if needed:

type Pair = tuple[float, float]
type Point_or_Tuple = Point | Pair

class Polygon_3:
def __init_ (
self,
vertices: Iterable[Point_or_Tuple] | None = None
) -> None:
self.vertices: list[Point] = []
for pt_tup in vertices oxr []:
self.vertices.append(
self.make_point(pt_tup)

Chapter 5 131

@staticmethod
def make_point(item: Point_oxr_Tuple) -> Point:
match item:
case Point() as pt:
return pt
case (float() | int(), float() | int()) as tup:
return Point(*tup)
case _
raise TypeError(
f"unexpected {type(item)}: {item!r}"

This initializer goes through the list of items (either Point or tuple) and ensures that any pairs of

float values are converted to Point instances.

The match statement uses structural pattern matching to identify the structure of the types presented.
When the argument value is a Point object, nothing needs to be done, it’s the desired type. When
the argument value is a tuple object, then the internals are examined to see whether it contains
two objects; each of these must be either a float value or an int value. We could try to write this

using the built-in isinstance() function, but it would be a painfully long expression.

If you are experimenting with the preceding code, you should also define these variant class designs
by creating subclasses of Polygon and overriding the __init__ () method. Extending a class with

dramatically different method signatures can raise error flags from tools such as Pyright.

For an example this small, there’s no clear winner among the implementation choices. They
all do the same small thing. If we have new functions that accept a Polygon argument, such as
area(polygon) or point_in_polygon(polygon, x, y), the benefits of the object-oriented code
become increasingly obvious. Likewise, if we add other attributes to the Polygon class definition,

such as color or texture, it makes more and more sense to encapsulate that data into a single class.

The more important a set of data is, the more likely it is to have multiple functions specific to
that data, and the more useful it is to use a class with attributes and methods that encapsulate the
data. We often suggest that two functions with the same data structures are fine, three pushes the
envelope. Writing that fourth function that also uses the same 1ist[Point] data structure is when

a class is a good idea.

132 When to Use Object-Oriented Programming

When making this design decision, it also pays to consider how the class will be used. If we’re only
trying to calculate the perimeter of one polygon in the context of a much greater problem, using a
function will probably be quickest to code and easier to use one time only. On the other hand, if
our program needs to manipulate numerous polygons in a wide variety of ways (calculating the
perimeter, area, and intersection with other polygons, moving or scaling them, and so on), we have
almost certainly identified a class of related objects. The class definition becomes more important

as the number of instances increases past one.

Additionally, pay attention to the interaction between objects. Look for inheritance relationships;
inheritance is difficult to model elegantly without classes. (Functions tend to rely on composition
to avoid repetition.) Look for the other types of relationships we discussed in Chapter 2, section

Composition and decomposition.

One size does not fit all. The built-in, generic collections and functions work well for a large number
of simple cases. A class definition works well for a large number of more complex cases. The

boundary is hazy at best.

The interface to a class needs to offer helpful features. One thing Python lets us do is define a
method that behaves as if it were a simple attribute. This can simplify someone’s understanding of

what a class does.

Adding behaviors to class data with properties

Throughout this book, we’ve focused on the encapsulation of behavior and data. Often, there is a
clear set of largely passive data objects, and generally active methods. In Python, the distinction

between data and behavior is uncannily blurry.

\ It may not help to use platitudes such as think outside the box. Rather, the number

\ 7

-,@\' of possibilities available suggests we need to stop thinking about the box.

Before we get into the details, let’s discuss some bad object-oriented design principles. In some
languages, we’re advised to never access attributes directly. They insist that we write attribute

access like this:

class Color:
def __init__ (self, rgb_value: int, name: str) -> None:

Chapter 5

133

def

def

def

def

self._rgb_value = rgb_value
self._name = name

set_name(self, name: str) -> None:
self._name = name

get_name(self) -> str:
return self._name

set_rgb_value(self, rgb_value: int) -> None:
self._rgb_value = rgb_value

get_rgb_value(self) -> int:
return self._rgb_value

The instance variables are prefixed with an underscore to suggest that they are non-public (other

languages would actually force them to be private). Then, the get and set methods provide access

to each instance variable.

This style is sometimes called “writing C++ with a Python accent.” It’s more like C++ than it is like

Python.

This class would be used in practice as follows:

>>> ¢ =

Coloxr (@xff000®, "bright red")
>>> c.get_name()
'bright

red'

>>> c.set_name("red")
>>> c.get_name()

'red'

The preceding example is not nearly as readable as the direct access version that Python favors:

class Color_Py:

def

__init__(self, rgb_value: int, name: str) -> None:

self.rgb_value = rgb_value
self.name = name

Here’s how this class works. It’s slightly simpler:

134 When to Use Object-Oriented Programming

>>> ¢ = Color_Py(0xff@o0@, "bright red")
>>> c.name
'bright red'

>>> c.name = "red"
>>> C.name
'red'

Why would anyone insist upon purely method-based syntax?

Y Historically, using getters and setters could make the separate compilation of
\/§ﬁ> machine-specific binaries work out in a tidy way. Using a method for every access
created a consistent binary interface to an object’s attributes. This consideration

doesn’t apply very well to Python.

One ongoing justification for getters and setters is that, someday, we may want to add extra code
when a value is set or retrieved. For example, we could decide to cache a value to avoid complex

computations,or we might want to validate that a given value is a suitable input.

For example, we could decide to change the set_name() method as follows:

class Color_V:
def __init_ (self, rgb_value: int, name: str) -> None:
self._rgb_value = rgb_value
if not name:
raise ValueError(f"Invalid name {name!r}")
self._name = name

def set_name(self, name: str) -> None:
if not name:
raise ValueError(f"Invalid name {name!r}")
self._name = name

etc.

If we had started a project by writing the original code for direct attribute access, and then later
changed the class to require using a set_name () method, we’d have created a problem: everyone
who had written code to access the attribute directly would now have to change their code to use
the new method. This leads to unpleasantness in a project team trying to collaborate. Time is spent

refactoring working code to keep it working.

Chapter 5 135

The mantra of “make all attributes private, accessible through methods,” doesn’t make much sense
in Python. The Python language lacks any real concept of private members! We can see the source;

we often say “We’re all adults here”

What can we do? Instead of insisting on methods, we can make the syntax distinction between

attribute and method invisible.

Python gives us the property() function to make methods that look like attributes. We can
therefore write our code to use direct member access, and if we ever unexpectedly need to alter the
implementation to do some calculation when getting or setting that attribute’s value, we can do so

without changing the interface.

Let’s see how it looks:

class Color_VP:
def __init__ (self, rgb_value: int, name: str) -> None:
self._rgb_value = rgb_value
if not name:
raise ValueErroxr(f"Invalid name {name!xr}")
self._name = name

def _set_name(self, name: str) -> None:
if not name:
raise ValueErroxr(f"Invalid name {name!xr}")
self._name = name

def _get_name(self) -> str:
return self._name

name = property(_get_name, _set_name)

Compared to the earlier class, we first change the public name attribute into a non-public _name
attribute. Then, we add two more non-public methods to get and set that variable, performing our

validation when we set it.

Finally, we have the property() construction at the bottom. This is the Python magic. It creates a
new attribute on the Color class called name. It sets this attribute to be a property descriptor. Under
the hood, a property attribute delegates the real work to the two methods we just created. When
used in an access context (on the right side of the = or : = symbol), the first method, _get_name(),
is evaluated. When used in an update context (on the left side of the = or := symbol), the second

method, _set_name(), is evaluated with the given argument value.

136 When to Use Object-Oriented Programming

This new version of the Color class can be used in exactly the same way as the earlier version, yet

it now performs validation when we set the name attribute:

>>> ¢ = Color_VP(0x0000ff, "bright red")
>>> c.name

'bright red'

>>> c.name = "red"

>>> c.name

'red'

>>> c.name =
Traceback (most recent call last):

File "src/colors.py", line 85, in _set_name
raise ValueError(f"Invalid name {name!r}")

ValueError: Invalid name

So, if we’d previously written code to access the name attribute, and then changed the class so the

attribute is now a property, the previous code would still work.

Bear in mind that, even with the name property, the previous code is not 100% safe. People can still
access the _name attribute directly and set it to an empty string if they want to. But if they access a
variable we’ve explicitly marked with an underscore to suggest it is not part of the public interface,
they’re the ones that have to deal with the consequences, not us. We established a formal contract,

and if they elect to break the contract, they own the resulting problems.

Properties in detail

Think of the property() function as returning an object that proxies any requests to get or set
(or delete) the attribute value through the method names we provide. The property () built-in is
a constructor for such an object, and that object is set as the public-facing member for the given

attribute.

This property constructor can actually accept two additional arguments, a delete function and
a docstring for the property. The delete function is evaluated in response to the rarely used del
statement. A property here can be useful for logging the fact that a value has been deleted, or
coping with particularly complicated data structures. The docstring is the string describing what
the property does, no different from the docstrings we discussed in Chapter 2. If we do not supply
this parameter, the docstring will instead be copied from the docstring for the first argument: the

getter method.

Chapter 5 137

Here is a silly example that states whenever any of the methods are called:

class NorwegianBlue:
def __init_ (self, name: str) -> None:
self._name = name
self._state: str

def _get_state(self) -> str:
print(f"Getting {self._name}'s State")
return self._state

def _set_state(self, state: str) -> None:
print(f"Setting {self._name}'s State to {statelr}")
self._state = state

def _del_state(self) -> None:
print(f"{self._name} is pushing up daisies!")
del self._state

silly = property(_get_state, _set_state, _del_state, "This is a silly
property")

Note that the state attribute has a type hint, str, but no initial value. It can be deleted, and only
exists for part of the life of a NorwegianBlue object. We need to provide a hint to help a tool such
as mypy understand what the type should be. But we don’t assign a default value because that’s

the job of the setter method.

If we actually use an instance of this class, it does indeed print out the correct strings when we

exercise the methods:

>>> p = NorwegianBlue("Polly")

>>> p.silly = "Pining for the fjords"

Setting Polly's State to 'Pining for the fjords'
>>> p.silly

Getting Polly's State
'Pining for the fjords'

>>> del p.silly

Polly is pushing up daisies!

Further, if we look at the help text for the Silly class (by issuing help(Silly) at the interpreter

prompt), it shows us the custom docstring for our silly attribute:

138 When to Use Object-Oriented Programming

class NorwegianBlue(builtins.object)
NorwegianBlue(name: str) -> None

Methods defined here:

__init__ (self, name: str) -> None
Initialize self. See help(type(self)) for accurate signature.

Data descriptors defined here:

_dict__
dictionary for instance variables

__weakref__
list of weak references to the object

silly
This is a silly property

Once again, everything is working as we planned. In practice, properties are generally defined with
the first two parameters: the getter and setter functions. If we want to supply a docstring for
a property, we can define it on the getter function; the property proxy will copy it into its own
docstring. The delete function is often left empty because object attributes rarely require explicit

deletion.

Decorators—another way to create properties

We can create properties using decorators. This syntax feature makes the definitions easier to read.
Decorators are used widely in Python, with a variety of purposes. For the most part, decorators
modify the function (or class) definition that they precede. We’ll look at the decorator design pattern
more broadly in Chapter 11.

The property function can be used with the decorator syntax to turn a get method into a property

attribute, as follows:

class NorwegianBlue_P:
def __init_ (self, name: str) -> None:
self._name = name
self._state: str

Chapter 5 139

@property

def silly(self) -> str:
"""This is a silly property"""
print(f"Getting {self._name}'s State")
return self._state

This applies the property () function as a decorator to the method definition that follows, silly().
This alternative is precisely equivalent to the previous silly = property(_get_state) syntax.
The difference is readability: we get to mark the silly method as a property at the top of the
method, instead of after it is defined, where it can be easily overlooked. It also means we don’t have

to create a non-public method with underscore prefixes just to define a property.

Going one step further, we can specify a setter function for the new property as follows:

class NorwegianBlue_P:
def _ _init_ (self, name: str) -> None:
self._name = name
self._state: str

@property

def silly(self) -> str:
"""This is a silly property"""
print(f"Getting {self._name}'s State")
return self._state

@silly.setter

def silly(self, state: str) -> None:
print(f"Setting {self._name}'s State to {statelr}")
self._state = state

This syntax, @silly.setter, looks odd compared with @property, although the intent should be
clear. First, we decorate the silly() method as a getter. Then, we decorate a second method —
which must have the same name — by applying the setter attribute of the originally decorated
silly() method! This works because the property function returns an object; this object also has
its own setter() method, which can then be applied as a decorator to other methods. Using the

same name for the get and set methods helps to group together the multiple methods that access

one common attribute.

We can also specify a delete function with @silly.deleter. Here’s what it looks like:

140 When to Use Object-Oriented Programming

@silly.deleter

def silly(self) -> None:
print(f"{self._name} is pushing up daisies!")
del self._state

We cannot specify a docstring using property decorators, so we need to rely on the decorator
copying the docstring from the initial getter method. This class operates exactly as our earlier
version acted, including the help text. You'll see the decorator syntax in widespread use. The

function syntax is how it actually works under the hood.

Deciding when to use properties

With the built-in property blurring the division between behavior and data, it can be confusing
to know when to choose an attribute, a method, or a property. In the Color_VP class example we
saw earlier, we added argument value validation to setting an attribute. In the NorwegianBlue class

example, we wrote detailed log entries when attributes were set and deleted.

There are other factors to take into account when deciding to use a property. In Python, data,
properties, and methods are all attributes of a class. The fact that a method is also a callable object
does not distinguish it from other types of attributes; indeed, we’ll see in Chapter 9, that it is possible
to create objects that can be called like functions. We’ll also discover that functions and methods

are themselves ordinary objects.

The fact that methods are callable attributes, and properties are also attributes, can help us make

this decision. We suggest the following approach:

« Use methods to represent actions: things that can be done to, or performed by, the object.
When you call a method, even with only one argument, it should do something. Method

names are generally verbs.

« Use attributes or properties to represent the state of the object. These are the nouns, adjectives,

and prepositions that describe an object.
There are some further considerations:

— Default to ordinary (non-property) attributes, initialized in the __init__() method.

These must be computed eagerly, which is a good starting point for any design.

— Use properties for attributes when there’s a computation involved with setting, getting,

or deleting an attribute. Examples include data validation, logging, and access controls.

Chapter 5 141

We’ll look at cache management in a moment. Properties are ideal for creating lazy

attributes, where we want to defer the computation when it’s costly and rarely needed.

Let’s look at a more realistic example. A common need for custom behavior is caching a value that is
difficult to calculate or expensive to look up (requiring, for example, a network request or database

query). The goal is to store the value locally to avoid repeated calls to the expensive calculation.

We can optimize access with a custom getter on the property. The first time the value is retrieved,
we perform the lookup or calculation. Then, we can locally cache the value as a non-public attribute
on our object (or in dedicated caching software), and the next time the value is requested, we return

the stored data. Here’s how we might cache a web page:

from urllib.request impoxrt urlopen

class WebPage:
def _ _init_ (self, url: str) -> None:
self.url = url
self._content: bytes | None = None

@property
def content(self) -> bytes:
if self._content is None:
print("Retrieving New Page...")
with urlopen(self.url) as response:
self._content = response.read()
return self._content or b''

We'll only read the website content once, when self._content has the initial value of None. After
that, we’ll return the value most recently read for the site. We can test this code to see that the page

is only retrieved once:
import time
webpage = WebPage("http://ccphillips.net/")
now = time.perf_counter()

contentl = webpage.content
first_fetch = time.pexf_counter() - now

142 When to Use Object-Oriented Programming

now = time.perf_counter()
content2 = webpage.content
second_fetch = time.perf_counter() - now

assert content2 == contentl, "Problem: Pages were different"

print(f"Initial Request {first_fetch:.6f}")
print(f"Subsequent Requests {second_fetch:.6f}")

The output?

% python sxc/colors.py
Retrieving New Page...

Initial Request 0.506753
Subsequent Requests 0.000004

It took about 0.5 seconds to retrieve a page from the ccphilips.net web host. The second fetch —
from a laptop’s RAM — takes 0.004 milliseconds! This is sometimes written as 4us, 4 microseconds.
Since this is the last digit, we can suspect it’s subject to rounding, and the time may be even smaller,

perhaps as little as 3us.

Custom getters are also useful for attributes that need to be calculated on the fly, based on other

object attributes. For example, we might want to calculate the average for a list of integers:

s Averagelist(list[int]):

@property

def average(self) -> float:
return sum(self) / len(self)

This small class inherits from 1ist, so we get list-like behavior for free. We added a property to the

class, and — hey, presto! — our list can have an average as follows:

>>> a = Averagelist([l@, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5])
>>> a.average
9.0

>>> a = Averagelist([10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5])
>>> 3a.average
9.0

Chapter 5 143

Of course, we could have made this a method instead. The implication of a method is that some
action was involved, but there’s no state change and nothing happens to any other objects. A
property called average is more suitable to a derived value, and is both easier to type and easier to

read.

We can imagine a number of similar reductions, including minimum, maximum, standard deviation,
median, and mode, all being properties of a collection of numbers. This can simplify a more complex
analysis by encapsulating these summaries into the collection of data values as properties, computed

as needed.

Custom setters are useful for validation, as we’ve already seen, but they can also be used to proxy
a value to another location. For example, we could add a content setter to the WebPage class that

automatically logs into our web server and uploads a new page whenever the value is set.

Scripts to functions to classes

Back in Chapter 1, we showed a long script. This script consumed a number of files in JSON notation,
and summarized some details. The script works. From one perspective, if it works, what more is

needed?
The answer is two-fold:
« We need reason to believe the script works
+ We need to be able to adapt and maintain the script
How do we know software works? The “try it and see” approach can be expensive and frustrating.

When dealing with something safe and relatively inexpensive, such as a new bookmark, we can put
it between pages in a book and confirm that it works. We do have to inspect it, though. Using a
slice of freshly-cooked bacon as a bookmark might damage our favorite copy of Moby Dick, or The

Whale. Using a piece of duct tape, similarly, requires some care before trying it.

Note that even something as safe-seeming as a bookmark requires some inspection. Consider
something more dangerous. We don’t want to try out software that could delete precious files or

corrupt the operating system without some careful inspection.
For software, the inspection process involves looking at a number of artifacts:

« Documentation such as a README file, or a docs folder. For more sophisticated software, we
expect to find a website, often something hosted by https://about.readthedocs.com/?r
ef=readthedocs.org, or https://github.com.

https://about.readthedocs.com/?ref=readthedocs.org
https://about.readthedocs.com/?ref=readthedocs.org
https://github.com

144 When to Use Object-Oriented Programming

« Results of type-checking and lint-checking tools.
« The results of test runs.
« The code itself.

One of the value propositions of Python (and open source software in general) is being able to
inspect the code and gain confidence that it does what we expect. A well-crafted script file may
have some documentation. Often, lint-checking tools can examine the source code for potential
programming problems. A script file is notoriously hard to test. Further, a long script can be baffling

to read because so many distinct classes of objects can be juxtaposed.

What can we do? It’s difficult to leap from a long sequence of statements into class definitions.

There are several small steps that can help move toward class definitions:

1. Refactor big script files to make at least one function, to set a baseline of testability. It’s very
difficult to make meaningful changes without a test suite, and it’s very difficult to test a

script file.

2. Decompose a long functions into several functions, organized around common data elements.
Rename the functions to have a common name prefix to reflect the common data. Provide
some notes on the common data and how the functions interact with this data. Test these

group of functions as a separate unit.
3. Collect groups of functions with related data into a single class definition.

None of these is particularly difficult. What’s essential is starting from working code and evolving
toward tested, documented, working code. The documentation and the test cases provide evidence
that the code is trustworthy and does what it’s supposed to do. The class-oriented structure lets
new readers inspect the code and come to an understanding of the elements in isolation. From the

isolated bits, the overall emergent behavior of the application will become evident.

This lets us address second topic, under “what more is needed?”, specifically, the need to adapt and

maintain the script. There are several common kinds of adaptations:
« New formats for the input or output
« New processing features
« New supporting libraries or frameworks

Generally, a script is structured around the inputs being consumed. A small change to the input

breaks the script. This kind of problem is avoided by refactoring a script to encapsulate the input

Chapter 5 145

processing from the computations and output formatting.

The changes to the output format are often pervasive throughout a script: the results are built in
separate parts of the script. This kind of problem is avoided by refactoring a script to encapsulate

the output processing from the computations and input parsing.

Changes to the processing, similarly, might be scattered throughout a script. This, too, needs to be

encapsulated.

Change to libraries and frameworks is part of modern open source software. Everyone has a good
idea, and the good ideas evolve rapidly. This requires the careful design of interfaces to allow a

supporting package to be gracefully excised and replaced when a better idea comes along.

Software that’s popular and useful will be adapted and changed.

\ ! 7/
',@\' Since there will be constant refactoring, strive for clear, expressive class definitions.

This can help facilitate the changes, the documentation, and the testing.

We don’t want to say that object-oriented programming is inevitable. We do want to encourage

active decomposition of big scripts to smaller functions.

Recall

Here are some of the key points in this chapter:

« When we have both data and behavior, this is the sweet spot for object-oriented design. We
can leverage Python’s generic collections and ordinary functions for many things. When it
becomes complex enough that we need to be sure that pieces are all defined together, then

we need to start using classes.
« When an attribute value is a reference to another object, the Pythonic approach is to allow

direct access to the attribute; we don’t write elaborate setter and getter functions.

« When an attribute value is computed, we have two choices: we can compute it eagerly or
lazily. Setting it during the __init__() processing computes it eagerly. A property lets us

be lazy and do the computation only if it is needed.

Exercises

We’ve looked at various ways that objects, data, and methods can interact with each other in an

object-oriented Python program. As usual, your first thoughts should be how you can apply these

146 When to Use Object-Oriented Programming

principles to your own work. Do you have any messy scripts lying around that could be rewritten
using an object-oriented manager? Look through some of your old code and look for methods that

are not actions. If the name isn’t a verb, try rewriting it as a property.

Think about code you’ve written in any language. Does it break any of the widely-used design
principles? Is there any duplicate code? Did you copy and paste code? Did you write two versions
of similar pieces of code because you didn’t feel like understanding the original code? Go back
over some of your recent code now and see whether you can refactor the duplicate code using
inheritance or composition. Try to pick a project you’re still interested in maintaining, not code
so old that you never want to touch again. That will help to keep you interested when you do the

improvements!

For an example application, refer to Chapter 1. The “Reading a big script” section shows a script
that does a lot of processing. The script is a lot of statements. Rewriting it into a collection of
class definitions may increase the side of the code. But can it simplify all of those decision-making
if statements? Can it unwind the deeply nested for statements? Does this help make it more

understandable?

In your daily coding, pay attention to the copy and paste commands. Every time you use them in
your editor, consider whether it would be a good idea to improve your program’s organization so

that you only have one version of the code you are about to copy.

Summary

In this chapter, we focused on identifying objects, especially objects that are not immediately
apparent: objects that manage and control. Objects should have both data and behaviors, but
properties can be used to blur the distinction between the two. The DRY principle is an important

indicator of code quality, and inheritance and composition can be applied to reduce code duplication.

In the next chapter, we’ll look at Python’s methods for defining abstract base classes. This lets us
define a class that’s a kind of template; it must be extended with subclasses that add narrowly-
defined implementation features. This lets us build families of related classes, confident that they

will work together properly.

Chapter 5 147

Join our community Discord space

Join our Python Discord workspace to discuss and know more about the book: https://packt.1i

nk/dHrHU

=] T [u]

https://packt.link/dHrHU
https://packt.link/dHrHU

Abstract Base Classes and
Operator Overloading

We often need to make a distinction between concrete classes that have a complete set of attributes
and methods and an abstract class that is missing some details. This parallels the philosophical idea
of abstraction as a way to summarize complexities. We might say that a sailboat and an airplane

have a common, abstract relationship of being vehicles, but the details of how they move are distinct.
In Python, we have two approaches to defining similar things:

« Duck typing: When two class definitions have the same attributes and methods, then
instances of the two classes have the same protocol and can be used interchangeably. We
often say, “When I see a bird that walks like a duck and swims like a duck and quacks like a
duck, I call that bird a duck””

+ Inheritance: When two class definitions have common aspects, a subclass can share common
features of a superclass. The implementation details of the two classes may vary, but
the classes should be interchangeable when we use the common features defined by the

superclass.

150 Abstract Base Classes and Operator Overloading

We can take inheritance one step further. We can have superclass definitions that are abstract: this
means they aren’t directly usable by themselves, but can be used through inheritance to create

concrete classes.

We have to acknowledge a terminology problem with base class and superclass. This is confusing
because they’re synonyms. There are two definitions here, and we flip back and forth between
them. Sometimes, we’ll use the “base class is a foundation” definition, where another class builds
on it via inheritance. Other times, we’ll use the “concrete class extends a superclass” definition. The
“super” class is superior to the concrete class; it’s typically drawn above it on a UML class diagram,

and it needs to be defined first.

Figure 6.1 shows an abstract base class at the top of the diagram:

abc.ABC

@ BaseClass

ﬁ_methoﬂ

ConcreteClass_1 ConcreteClass_2

+a_method() +a_method()

Figure 6.1: Abstract base class

Our base class, named BaseClass here, has a special class, abc . ABC, as a parent class. This provides
some metaclass features that help make sure the concrete classes have replaced the abstractions. In
this diagram, we have added a big “A” circle to mark the class as abstract. This bit of decoration is
optional, and often unhelpful, so we won’t use it in other diagrams. The slanted font is another

clue that the class is abstract.

The diagram shows an abstract method, a_method (), which doesn’t have a defined body. A subclass

must provide the missing method. Again, a slanted font is used for the method name to provide a

Chapter 6 151

suggestion that it’s abstract. The two concrete subclasses provide distinct implementations of this

missing method.
In this chapter, we’ll cover the following topics:
+ Creating an abstract base class
« ABCs and type hints
« The collections.abc module
« Creating your own abstract base class
+ Demystifying the magic — looking under the hood at the implementation of an ABC

+ Operator overloading

Extending built-ins
« Metaclasses

We’ll start by looking at how we use an abstract class and create a concrete class from it.

Creating an abstract base class

Imagine we are creating a media player that can work with third-party plugins. It is advisable to
create an abstract base class (ABC) in this case to document what API the third-party plugins should
provide. Clearly stating the contract between the player and plugin is one of the stronger use cases

for ABCs.

The general design is to have a common feature, such as play(), that applies to a number of classes.
We don’t want to pick some particular media format to use as a superclass; it seems somehow

wrong to claim that some format is foundational, and all others are derived from it.

We’d prefer to define the media player as an abstraction. Each unique kind of media file format can

provide a concrete implementation of the abstraction.

The abc module provides the tools to do this. Here’s an abstract class that requires a subclass to

provide a concrete method and a concrete property to be useful:

import abc

class Medialoader(abc.ABC):

152 Abstract Base Classes and Operator Overloading

ext: str

@abc.abstractmethod
def play(self) -> None:

The abc . ABC class uses a metaclass — a class used to build the concrete class definitions. Python’s
default metaclass is named type. The type metaclass doesn’t check for abstract methods when we
try to create an instance; it allows construction to proceed. The abc . ABC class includes an extension

to the type metaclass to prevent us from creating instances of classes that are not fully defined.

There are two decorators used to describe the placeholders in the abstraction. The example shows
an @abc.abstractmethod decorator on the play() definition. Python uses decorators widely to
make modifications to the general nature of the method or function. In this case, the decorator
provides additional details used by the metaclass that was included by the ABC class. Because we
marked a method or property as abstract, any subclass of this class must implement that method or
property in order to be a useful, concrete implementation. An attempt to create an instance of an

abstract class will raise an exception.

The body of the method is actually .. .; with a three-dot token, the ellipsis, which really is valid
Python syntax. It reminds everyone that a useful body needs to be written in order to create a

working, concrete subclass.

Note the type hint for the ext property. This looks like a class-level variable, but doesn’t have any
value. The intent is for a subclass to provide a class-level variable with a string literal value. This

hint helps tools such as mypy to check the code for consistent use of types.

One of the consequences of the metaclass and the decorator is the class now has a new special
attribute, __abstractmethods__. This attribute lists all of the names that need to be filled in to

create a concrete class:

>>> Medialoader.__abstractmethods_

frozenset({'play'?})

Let’s see what happens if we don’t supply concrete implementations for the abstractions. The first

example is a class that’s incomplete, and can’t be concrete:

Chapter 6 153

>>> class Wav(Medialoader):
pass

>>> x = Wav()

Traceback (most recent call last):

X = Wav()
TypeError: Can't instantiate abstract class Wav without an implementation
for abstract method 'play'

The second example is a class that has the required methods:

>>> class 0gg(Medialoader):
ext = '.ogg
def play(self) -> None:

pass

>>> 0 = Ogg()

The definition of the Wav subclass fails to implement the abstract play() method. Because this
subclass of Medialoader is still abstract, it is not possible to instantiate the class; an exception is
raised. The class is still a potentially useful abstract class, but you’d have to subclass it and fill in

the abstract placeholder before it can actually do anything.

The 0gg subclass supplies both attributes, so it — at least — can instantiate cleanly. It’s true, the
body of the play() method doesn’t do very much. What’s important is that all of the placeholders

were filled, making 0gg a concrete subclass of the abstract MedialLoader class.

There’s a subtle issue with using a class-level variable for the preferred media file extension.
Because the ext attribute is a variable, it can be updated. Using o.ext = '.xyz’' is not expressly
prohibited. Python doesn’t have an easy, obvious way to create read-only attributes. We often rely
on documentation to explain the consequences of changing the value of the ext attribute. In some
cases, we rely on composition to create an immutable wrapper that contains a mutable object. If it
were a problem with the community building on this class, we could make it a property, which can

be read-only.

Abstract classes have clear advantages when creating a complex application. The use of abstraction
like this makes it very easy for tools such as mypy to include that a class does (or does not) have

the required methods and attributes.

154 Abstract Base Classes and Operator Overloading

This also mandates a certain amount of fussy importing to be sure that the module has access to
the necessary abstract base classes for an application. One of the advantages of duck typing is the
ability to avoid complex imports and still create a useful class that can act polymorphically with
peer classes. This advantage is often outweighed by the ability of the abc.ABC class definition to
support type checking via tools such as mypy, and to also do a runtime check for completeness
of a subclass definition. The abc.ABC class also provides far more useful error messages when

something is wrong.

One important use case for ABCs is the collections module. This module defines the built-in

generic collections using a sophisticated set of base classes and mixins.

The ABCs of collections

A really comprehensive use of the ABCs in the Python standard library lives in the collections
module. The collections we use are extensions of the Collection abstract class. Collection is an

extension of an even more fundamental abstraction, Container.

Since the foundation is the Container class, let’s inspect it in the Python interpreter to see what

methods this class requires:

>>> from collections.abc import Container

>>> Container.__abstractmethods_
frozenset({'__contains__'})

The Container class has exactly one abstract method that needs to be implemented, __contains__().

You can use help(Container.__contains__) to see what the function signature should look like:

>>> help(Container.__contains__)
Help on function __contains__ in module collections.abc:

__contains__(self, x)

We can see that __contains__() needs to take a single argument. Unfortunately, the help text
doesn’t tell us much about what that argument should be. From the name of the ABC, it seems clear

that the argument is the value the user is checking to see whether the container holds.

This __contains__() special method implements the Python in operator. This method is also

implemented by set, 1ist, stx, tuple, and dict. However, we can also define a silly container that

Chapter 6 155

tells us whether a given value is in the set of odd integers:

class OddIntegers:
def _ _contains__(self, x: int) -> bool:
return x % 2 != 0

We've used the modulo test for oddity. If the remainder of x divided by 2 is 0, then x was even;

otherwise, x was odd.

Here’s the interesting part: we can instantiate an OddContainer object and determine that, even

though we did not extend Container, the class behaves as a Container object:

>>> from collections.abc import Container

>>> odd = OddIntegers()

>>> jsinstance(odd, Container)

True

>>> jssubclass(0ddIntegers, Container)
True

This example shows why duck typing is an awesome addition to classical polymorphism. We can
create is-a relationships without the overhead of writing the code to set up inheritance (or worse,

multiple inheritance).

It’s important to be sure that methods are defined properly, so a static type-checking

\Il

‘,@\‘ tool is important. Use a tool such as mypy or pyright to provide additional

assurance that the definitions are correct.

One cool thing about the Container ABC is that any class that implements it gets to use the in
keyword for free. In fact, in is just syntax sugar that delegates to the __contains__() method. Any
class that has a __contains__() method is a Container and can therefore be queried by the in

keyword.

For example:

>>> odd = OddIntegers()
>>> 1 in odd

True
>>> 2 in odd

156 Abstract Base Classes and Operator Overloading

False

>>> 3 in odd
True

The real value here is the ability to create new kinds of collections that are completely compatible
with Python’s built-in generic collections. We could, for example, create a dictionary that uses a
binary tree structure to retain keys instead of a hashed lookup. We’d start with the Mapping ABC
definitions, but change the algorithms that support methods suchas __getitem__(),__setitem__(),

and __delitem__().

Python’s duck typing works (in part) because the search for a method is a simple examination of

the class definitions in method resolution order. There’s little real magic to this.

Abstract base classes and protocols

A concept that’s adjacent to abstract classes is the protocol. A protocol captures the essence of
duck typing: when two classes have the same batch of methods, they both adhere to a common
protocol. We see this frequently with classes with similar methods, where there’s a common
protocol. Consider how the various numeric types, int, float, complex, and others, all support the
comparison operators, such as <, <=, >, and >=. Comparison is one of many protocols that are part

of Python.

The essence of creating ABCs is defined in the abc module. We’ll look at how this works later. We
can make use of protocols without using the abc module. In the next section, we want to change
direction slightly and make formal use of abstract classes; that means using the definitions in the

collections.abc module.

The collections.abc module

One prominent use of ABCs is in the collections.abc module. This module provides the ABC
definitions for Python’s built-in collections. This is how 1ist, set, and dict (and a few others) can

be built from individual component definitions.

We can use the definitions to build our own unique data structures in ways that overlap with built-in
structures. We can also use the definitions when we want to write a type hint for a specific feature
of a data structure, without being overly specific about alternative implementations that might also

be acceptable.

Chapter 6 157

The definitions in collections.abc don’t — trivially — include 1list, set, or dict. Instead, the
module provides definitions such as MutableSequence,MutableMapping, and MutableSet, which

are the ABCs for which the 1list, dict, or set classes we use are the concrete implementations.

Let’s follow the various aspects of the definition of Mapping back to its origins. Python’s dict class
is a concrete implementation of MutableMapping. The abstraction comes from the idea of mapping
a key to a value. The MutableMapping class depends on the Mapping definition, an immutable,
frozen dictionary, potentially optimized for lookups. Let’s follow the relationships among these

abstractions.

Figure 6.2 shows the path we want to follow:

@ Container @ Iterable ® Sized

+__contains__(item) +__iter_() +__len__(item)
w/
@ Collection

@ Mapping

+__getitem__(key)
+keys()

+items(
+values()
+get(key, default)

@ MutableMapping

+__setitem__(key, value)
+__delitem__(key)

Figure 6.2: The mapping abstractions

Starting in the middle, we can see that the Mapping definition depends on the Collection class
definition. The definition of the Collection abstract class, in turn, depends on three other ABCs:

Sized,Iterable, and Container. Each of these abstractions demands specific methods.

158 Abstract Base Classes and Operator Overloading

If we’re going to create a lookup-only dictionary — a concrete Mapping implementation — we’ll

need to implement at least the following methods:

« The Sized abstraction requires an implementation of the __len__() method. This lets an

instance of our class respond to the len() function with a useful answer.

« The Iterable abstraction requires an implementation of the __iter_ () method. This lets
an object work with the for statement and the iter() function. In Chapter 10, The Iterator

Pattern, we’ll revisit this topic.

« The Container abstraction requires an implementation of the __contains__() method. This

permits the in and not in operators to work.

« The Collection abstraction combines Sized, Iterable, and Container without introducing

additional abstract methods.

« The Mapping abstraction, based on Collection, requires, among other things, __getitem__ (),
iter (),and __len__(). The class has a default definition for __contains__(), based on
whatever __iter__ () method we provide. The Mapping definition will provide a few other

methods, also.

This list of methods comes directly from the abstract relationships in the base classes. By building
our new dictionary-like immutable class from these abstractions, we can be sure that our class will

collaborate seamlessly with other Python generic classes.

If we look at the documentation at https://docs.python.org/3/1library/collections.abc.html,
we see the page is dominated by a table showing abstract class definitions and the definitions they
depend on. There’s a lattice of dependencies showing overlap among the class definitions. It’s
this overlap that allows us to use a for statement to iterate through every kind of collection that

implements the Iterable ABC.

Let’s define our own immutable Mapping object implementation by extending the abstract classes.
The goal is to be able to load our dictionary-like mapping once with keys and values, and then
use it to map the keys to their values. Since we aren’t going to allow any updates, we can apply a

variety of algorithms to make it very fast as well as very compact.

This means we’ll start from an abstract base class of Mapping. We're not going start from the more
general dict, because that class offers too many features. The Mapping type is both an abstract

class as well as a generic type annotation.

https://docs.python.org/3/library/collections.abc.html

Chapter 6 159

Almost all Python code is generic with respect to type. A generic type annotation describes common
Python functionality, with one extra bonus. We can provide a missing type to make the generic fea-
ture more specific. The general-purpose dict class is an implementation of MutableMapping[Hashable,
Any]. We want to use Mapping as the base, to make the structure immutable. And we’d like to

narrow the types even further. (We’ll look at generic types in Chapter 7, also.)

If the key is a type that can be sorted into order, we can do rapid lookups without computing a hash.
The value will be an object of any possible type; we won’t do anything special here. Changing the
type of mapping and the key will lead to a slightly different generic type. The subclass definition

starts with the following line of code:

class Lookup(Mapping[Comparable, Any]):

We’ve defined the key with the type Comparable because we want to be able to compare the keys
and sort them into order. Searching through a list in order is often more efficient than searching a

list that’s not in order. We’ve left the value to be Any.

We’ll look at the core of a Lookup class definition first. We’ll return to the Comparable class definition

after solidifying the essentials of a new kind of mapping from keys to values.

When we look at ways we can construct a dictionary, we see that a dictionary can be built from
two different kinds of data structures. Our new mapping has to have this same flexibility. The two

structures are exemplified by the following:

>>> X dict({"a": 42, "b": 7, "c": 6})
>>> y = dict([("a", 42), ("b", 7), ("c", 6)])

>>> X == y
True

We can build a mapping from an existing mapping, or we can build a mapping from a sequence of

two tuples with keys and values. This means there are two separate definitions for __init__():
o def __init__ (self, source: Mapping[Comparable, Any]) -> None
o def __init__ (self, source: Iterable[tuple[Comparable, Anyl]l) -> None

These two definitions have distinct type hints. To make it clear to tools such as mypy, we need
to provide overloaded method definitions. This is done with the @overload decorator from the

typing module. We’'ll provide two method definitions with the two alternative type hints. After

160 Abstract Base Classes and Operator Overloading

these, we’ll provide the actual implementation method to do the useful work. (The two overloaded

type definitions are optional, of course.)

Here’s the first part of the Lookup class definition. We’ll break this into pieces because the __init__ ()

method needs to cover these two cases defined by the alternative overloads:

from collections.abc import Iterator, Iterable, Mapping

class Lookup(Mapping[Comparable, Any]):
@overload
def __init_ (self, source: Iterable[tuple[Comparable, Any]]) -> None:

@overload
def __init__ (self, source: "Mapping[Comparable, Any]") -> None:

def __init_ (
self,
source: Any = None,
) -> None:
sorted_pairs: list[tuple[Comparable, Any]]
match source:
case Iterable() as an_iter:
Assume it's pairs.
sorted_pairs = sorted(
cast(Iterable[tuple[Comparable, Any]], an_iter)
)
case Mapping() as a_map:
sorted_pairs = sorted(a_map.items())
case _
sorted_pairs = []
self.key_list: list[Comparable] = [p[@] for p in sorted_pairs]
self.value_list: list[Any] = [p[1l] for p in sorted_pairs]

The __init__() method needs to handle three cases for loading a mapping: a sequence of pairs,
another mapping, or nothing. The implementation must sort the keys, and then separate the keys
from the values and put them into two parallel lists. A sorted list of keys can be rapidly searched to
find a match. The bisect module handles this elegantly. A single item from the sorted list of values

is returned when we get a key’s value from the mapping.

Here are the imports needed:

Chapter 6 161

import bisect
from collections.abc import Iterator, Iterable, Mapping
from typing import Protocol, Any, overload, cast

Here are the other abstract methods that are defined by the @abstractmethod decorator. We provide

the following concrete implementations:

def _ _len_ (self) -> int:
return len(self.key_list)

def __iter (self) -> Iterator[Comparable]:
return iter(self.key_list)

def __contains__(self, key: object) -> bool:
index = bisect.bisect_left(
self.key_list,
cast(Comparable, key)

)
return key == self.key_list[index]

def __getitem__ (self, key: Comparable) -> Any:
index = bisect.bisect_left(self.key_list, key)
if key == self.key_list[index]:
return self.value_list[index]
raise KeyError(key)

The __len__ (), __iter_ (), and __contains__() methods are required by the Sized, Iterable,
and Container abstract classes. The Collection abstract class combines the other three without

introducing any new abstract methods.

The __getitem__() method is required to be a Mapping. Without it, a collaborating object can’t

retrieve an individual value for a given key.

The use of the bisect module is one way to find a specific value rapidly in a sorted list of keys. The
bisect.bisect_left() function finds the spot where a key should be in a sorted list. If the key
is in the expected position, we can return the value to which it maps. If the key is where it was

expected, we can raise the KeyError exception.

Note that the __contains__() definition has the object class as the type hint. This is required

because Python’s in operation needs to support any kind of object, even ones that don’t obviously

162 Abstract Base Classes and Operator Overloading

support the Comparable protocol.

Here’s how it looks when we use our shiny new Lookup class:

>>> x = Lookup(
[

"Zillah"),
"Amy"),
"Clara"),
"Basil"),

>>> x["c"]
'Clara’

This collection, generally, behaves a bit like a dictionary. There are a number of dict-like aspects
we can’t use, though, because we chose an ABC that didn’t describe the full set of methods for the

dict class.

If we try to update the mapping, it looks like this:

>>> X[Hmll] = |IMaudH
Traceback (most recent call last):

File "<doctest lookup_mapping.__test_ .test_not_a_dict[1]>", line 1, in
<module>
x["m"] = "Maud"
TypeError: 'Lookup' object does not support item assignment

This exception is consistent with the rest of our design. An update to this object means inserting an
item at the correct position to maintain a sorted order. Shuffling a large list around gets expensive;
if we need to update the lookup collection, we should consider other data structures, such as a

red-black tree. But, for the pure search operation using the bisect algorithm, this performs nicely.

We also need to look at the definition of the Comparable class. This defines the minimum set of
features — the protocol — for the keys. It’s a way to formalize the comparison rules required to
keep the keys for the mapping in order. This helps mypy confirm that objects we try to use as keys

really can be compared:

Chapter 6 163

class Comparable(Protocol):
def __eq__(self, other: Any) -> bool:

def __ne_ (self, other: Any) -> bool:

def __le_ (self, other: Any) -> bool:

def __1t_ (self, other: Any) -> bool:

def __ge_ (self, other: Any) -> bool:

def __gt__ (self, other: Any) -> bool:

There’s no implementation for a protocol; it is a very pure specification of a contract a class must
adhere to. This protocol definition introduces a new type hint. Existing class definitions such as
str and int implement this protocol, and can be used with our new class. Any other class that also
provides the needed methods can be used. This is the beauty of duck typing: any class that offers

these methods can be used.

Note that we don’t rely on items having a hash code. This is distinct from the built-in dict class,

which requires the keys to be hashable.
The general approach to using abstract classes is this:
1. Find a class that does most of what you need.

2. Identify the methods in the collections.abc definitions that are marked as abstract. The

documentation often gives a lot of information, but you’ll also have to look at the source.
3. Subclass the abstract class, filling in the missing methods.

4. While it can help to make a checklist of the methods, there are tools to help with this.
Creating a unit test (we’ll cover testing in Chapter 13) means you need to create an instance
of your new class. If you haven’t defined all the abstract methods, this will raise an exception.
Using mypy will also help with spotting abstract methods that aren’t properly defined in

the concrete subclass.

164 Abstract Base Classes and Operator Overloading

This is a powerful way to reuse code when we choose the abstractions well; a person can form a
mental model of the class without knowing all of the details. It’s also a powerful way to create
closely related classes that can easily be examined by tools such as mypy. Beyond those two
advantages, the formality of marking a method as abstract gives us a runtime assurance that the

concrete subclass really does implement all the required methods.

Now that we’ve seen how to use an ABC, let’s look at defining a new abstraction.

Creating your own abstract base class

We have two general paths to creating classes that are similar: we can leverage duck typing or we
can define common abstractions. When we leverage duck typing, we can formalize the related types
by creating a type hint using a protocol definition to enumerate the common methods, or we can
use a Union annotation to enumerate the alternative types. When we use a common abstraction,

each subclass explicitly names the class it extends.

There are an almost unlimited number of influencing factors that suggest one or the other approach.
While duck typing offers the most flexibility, we may sacrifice the ability to use tools such as mypy.
An ABC definition can be wordy.

We’ll tackle a small problem. We want to build a simulation of games that involve polyhedral dice.
These are dice that have 4, 6, 8, 12, or 20 sides. The six-sided dice are conventional cubes. Some
sets of dice include 10-sided dice, which are cool, but aren’t — technically — a regular polyhedron;

they’re two sets of five “kite-shaped” faces.

One question that comes up is how best to simulate rolls of these different-shaped dice. We can
define an abstract class that has the general features of a die. A concrete subclass can supply the
missing randomization capability. The random module has a very flexible generator. Other choices

may be helpful for other applications.

The abc module has the foundational definitions for abstract classes:

import abc

class Die(abc.ABC):
def _ init_ (self) -> None:
self.face: int
self.roll()

Chapter 6 165

@abc.abstractmethod
def roll(self) -> None:

def __repr_ (self) -> str:
return f"{self.face}"

We’ve defined a class that inherits from the abc.ABC class. Any attempt to create an instance of
the Die class directly will raise a TypeError exception. Attempting to create the instance creates a

runtime exception. The annotation is also checked by tools such as mypy.

We’ve marked a method, roll(), as abstract with the @abc . abstractmethod decorator. This isn’t
a very complex method, but any subclass needs to match this abstract definition. The matching
between abstract and concrete definitions is only checked by tools such as mypy. If we don’t use

tools to prevent the problem, things are likely to break at runtime.

Consider this mess of code and the error message it creates:

>>> class Bad(Die):

def roll(self, a: int, b: int) -> float:
.. return (a+b)/2
>>> x = Bad()
Traceback (most recent call last):

self.roll()

TypeError: Bad.roll() missing 2 required positional arguments: 'a' and 'b'

>>> class Bad(Die):
def roll(self, a: int, b: int) -> float:
return (a + b) / 2

We can see that this raised a TypeError exception when we tried to make an instance of the Bad
class. The problem is caused by the base class, __init__(), not providing the a and b parameters to
this strange-looking rol1() method. This is valid Python code, but it doesn’t make sense in this
context. The method will also generate errors from annotation-checking tools, providing ample

warning that the method definition doesn’t match the abstraction.

Here are what two proper extensions to the Die class look like:

166 Abstract Base Classes and Operator Overloading

import random

class D4(Die):
def roll(self) -> None:
self.face = random.choice((1, 2, 3, 4))

class D6(Die):
def roll(self) -> None:
self.face = random.randint(1, 6)

We’ve provided methods that provide a suitable definition for the abstract placeholder in the
Die class. They use vastly different approaches to selecting a random value. The four-sided
die uses random.choice(). The six-sided die — the common cube most people know — uses

random.randint ().

Let’s go a step further and create another abstract class. This one will represent a handful of dice.
Again, we have a number of candidate solutions, and we can use an abstract class to defer the final

design choices.
The interesting part of this design is the differences in the rules for games with handfuls of dice:

« In some games, the rules require the player to roll all the dice. The rules for a lot of games

with two dice require the player to roll both dice.

+ In other games, the rules allow players to save dice and re-roll selected dice. In some games,
such as Yacht, the players are allowed at most two re-rolls. In other games, such as Zilch,
they are allowed to re-roll until they elect to save their score or roll something invalid and

lose all their points, scoring zilch (hence the game’s name).

These are dramatically different rules that apply to a simple list of Die instances. Here’s a class that

leaves the initial roll-all-the-dice implementation as an abstraction:

class Dice(abc.ABC):
def __init__ (self, n: int, die_class: type[Die]) -> None:
self.dice = [die_class() for _ in range(n)]

@abc.abstractmethod
def roll(self) -> None:

Chapter 6 167

@property
def total(self) -> int:
return sum(d.face for d in self.dice)

The __init__() method expects an integer, n, and the class to be used to create Die instances,
named die_class. The type hint is type[Die], telling mypy to be on the lookout for any subclass
of the Die ABC. We don’t expect an instance of any of the Die subclasses; we expect the class object
itself. We’'d expect to see an expression such as SomeDice (6, D6) to create a list of six instances of

the D6 class.

We’ve defined the collection of Die instances as a list because that seems to have all the features
we need. Some games will identify dice by their position when saving some dice and re-rolling the

remainder of them, and the integer list indices seem useful for that.

This subclass implements the roll-all-the-dice rule:
class SimpleDice(Dice):
def roll(self) -> None:

for d in self.dice:
d.roll()

Each time the application evaluates roll(), all the dice are updated. It looks like this:

>>> sd = SimpleDice(6, D6)
>>> sd.roll()

>>> sd.total
23

Here’s another subclass that provides a dramatically different set of methods. Some of these fill in

the spaces left by abstract methods. Other methods, however, are unique to the subclass:

from collections.abc import Iterable

class YachtDice(Dice):
def _ init_ (self) -> None:
super().__init__ (5, D6)

168 Abstract Base Classes and Operator Overloading

self.saved: set[int] = set()

def saving(self, positions: Iterable[int]) -> "YachtDice":
if not all(@ <= n < 6 for n in positions):
raise ValueError("Invalid position")
self.saved = set(positions)
return self

def roll(self) -> None:
for n, d in enumerate(self.dice):
if n not in self.saved:
d.roll()
self.saved = set()

We’ve created a set of positions for dice to be saved. This is initially empty. We can use the saving()

method to provide an iterable collection of integers as positions to save. It works like this:

= YachtDice()

.r0ll1()

.dice

2, 6, 1]

.saving([@, 1, 2]).roll()
.dice

2, 6, 6]

= YachtDice()

.r0l11()

.dice

2, 6, 1]

.saving([@, 1, 2]).roll()
.dice

2, 6, 6]

We improved the hand from three of a kind to a full house.

In these cases — the Die class and the Dice class — it’s not clear that the abc.ABC base class and the
presence of an @abc . abstractmethod decoration are dramatically better than providing a concrete
base class with a common set of default definitions. In class definitions where the implementations

are more dramatically different, having a concrete base class may not be helpful.

Chapter 6 169

In some languages, an abstraction-based definition is required. In Python, because of duck typing,
abstraction is optional. In cases where it clarifies the design intent, use it. In cases where it seems

fussy and little more than overhead, set it aside.

Because it’s used to define the collections, we’ll often use the collection.abc names in type
hints to describe the protocols that objects must follow. In less common cases, we’ll leverage the

collections.abc abstractions to create our own unique collections.

Demystifying the magic
We've used ABCs, and it’s clear they’re doing a lot of work for us. Let’s look inside the class to see

some of what’s going on:

>>> Die.__abstractmethods__
frozenset({'roll'})

>>> Die.roll._ isabstractmethod__
True

The abstract method, roll(), is tracked in a specially named attribute, __abstractmethods__,
of the class. This suggests what the @abc.abstractmethod decorator does. This decorator sets
__isabstractmethod__ to mark the method. When Python finally builds the class from the various
methods and attributes, the list of abstractions is also collected to create a class-level set of methods

that must be implemented.

Any subclass that extends the Die abstraction will also inherit this __abstractmethods__ set. When
methods are defined inside the subclass, names are removed from the set as Python builds the class
from the definitions. We can only create instances of a class where the set of abstract methods in

the class is empty.

Central to this is the way classes are created: a class builds objects. This is the essence of most of

object-oriented programming. But what is a class?

1. A class is another object with two jobs: it has the special methods used to create and manage
instances of the class, and it also acts as a container for the method definitions for objects of
the class. We think of building class objects with the class statement, which leaves open

the question of how the class statement builds the class object.

2. The type class is the internal object that builds our application classes. When we enter the

code for a class, the details of construction are actually the responsibility of methods of the

170 Abstract Base Classes and Operator Overloading

type class. After type has created our application class, our class then creates the application

objects that solve our problem.

The type object is called the metaclass: the class used to build classes. This means every class
object is an instance of type. Most of the time, we’re perfectly happy with letting a class statement

be handled by the type class so our application code can run.

Because type is itself a class, it can be extended. A class, abc.ABCMeta, extends the type class to
check for methods decorated with @abstractmethod. This is how additional features can be added

to the class definition process.

We can use the ABCMeta metaclass explicitly when we create a new class, if we want:

class DieM(metaclass=abc.ABCMeta):
def _ _init_ (self) -> None:
self.face: int
self.roll()

@abc.abstractmethod
def roll(self) -> None:

We’ve used metaclass as a keyword parameter when defining the components that make up a class.
This means the abc.ABCMeta extension to the built-in type class will be used to create the final

class object.

Now that we’ve seen how classes are built, we can consider other things that we can do when
creating and extending classes. Python exposes the binding between the syntactic operators, such
as the / operator, and the methods of the implementing class. This allows the float and int classes
to do different things with the / operator, but it can also be used for quite different purposes. For
example, the pathlib.Path class makes use of the / operator to combine a Path and str object to

create a new Path instance. We’ll look at operator overloading next.

Operator overloading

Python’s operators, +, /, -, *, and so on, are implemented by special methods. We can apply these
operators more widely than the built-in numeric types. Doing this can be called “overloading” the

operators: letting them work with more than numeric types.

Looking back at the The collections.abc module section, earlier in this chapter, we offered some

Chapter 6 171

foreshadowing about how Python connects some built-in features with our classes. When we look
at the collections.abc.Collection class, it is the ABC for all Sized, Iterable, Containers; it

requires three methods that enable two built-in functions and one built-in operator:
« The __len__() method is used by the built-in len() function

« The __iter_ () method is used by the built-in iter() function, which means it’s used by

the for statement
« The __contains__() method is used by the built-in in operator

It’s not wrong to imagine that the built-in len() function has this definition:

def len(object: Sized) -> int:
return object.__len__ ()

When we ask for len(x), it’s doing the same thing as x.__len__(), but it is shorter, easier to read,
and easier to remember. Similarly, iter(y) is effectively y.__iter__ (). Also, an expression like z

in Sis evaluated as if it were S.__contains__(z).

And yes, with a few exceptions, all of Python works this way. We write pleasant, easy-to-read
expressions that are implemented by special methods. Some notable exceptions are the logic
operations: and, or, not, and if-else. These don’t map directly to special method definitions. The

is operator, also, doesn’t rely on special methods.

Because almost all of Python relies on the special methods, it means we can change use their

behavior to add features. One prominent example of this is in the pathlib module:

>>> from pathlib import Path
>>> home = Path.home()

>>> home / ".cargo" / "bin" / "uv"
PosixPath('/Users/slott/.cargo/bin/uv"')

Note: Your results will vary, depending on your operating system and your username and whether

or not you have uv installed.

What doesn’t vary is that the / operator is used to connect a Path object with string objects to

create a new Path object.

The / operator is implemented by the __truediv__() and __rtruediv__() methods. In order to

make operations commutative, Python has two places to look for an implementation. Given an

172 Abstract Base Classes and Operator Overloading

expression of A op B, where op is any of the Python operators, such as __add__ for +, Python does

the following checks for special methods to evaluate the operator:

1. If B is a proper subclass of A, try B.__rop__(A) before any others. This lets the subclass B
override an operation from superclass A. If there is the expected method, and it returns a
value that’s not the special NotImplemented value, this is the result. If the method doesn’t

exist, or it returns NotImplemented, keep searching.

2. Try A.__op__(B). If this returns a value that’s not the special NotImplemented value, this
is the result. For a Path object expression such as home / “miniconda3”, this is effectively
home.__truediv__(“miniconda3”). A new Path object is built from the old Path object and

the string. If the method doesn’t exist, or it returns NotImplemented, keep searching.

3. Try B.__rop__(A). This might be the __radd__() method for the reverse addition imple-
mentation. If this method returns a value other than the NotImplemented value, this is the
result. Note that the operand ordering is reversed. For commutative operations, such as
addition and multiplication, this does not matter. For non-commutative operations, such as

subtraction and division, the change in ordering needs to be reflected in the implementation.

Let’s return to our handful of dice example. We can implement a + operator to add a Die instance to
a collection of Dice. We'll start with a base definition of a class that contains a handful of different
kinds of dice. This will be different from the previous Dice class, which assumed homogeneous

dice. We’ll start with some basics and then incorporate the __add__() special method:

class DDice:
def __init__ (self, *die_class: type[Die]) -> None:
self.classes = die_class
self.dice = [dc() for dc in self.classes]
self.adjust: int = 0

def plus(self, adjust: int = @) -> "DDice":
self.adjust = adjust
return self

def roll(self) -> None:
for d in self.dice:
d.roll()

@property
def total(self) -> int:

Chapter 6 173

return sum(d.face for d in self.dice) + self.adjust

This shouldn’t be much of a surprise. It looks a lot like the Dice class defined previously. We’ve added
an adjust attribute; this is set by the plus() method so we can use DDice (D6, D6, D6).plus(2).
It fits better with some tabletop role-playing games (TTRPGs).

Also, recall that we provide the types of the dice to the DDice class, not instances of dice. We use

the class object, D6. The instances of a given class are created by DDice in the __init__ () method.

Here’s the cool part: we can use the plus operator with DDice objects, Die classes, and integers to

define a complex roll of the dice:

def __add__(self, die_class: Any) -> "DDice":
match die_class:

case type() if issubclass(die_class, Die):
new_classes = self.classes + (die_class,)
new = DDice(*new_classes).plus(self.adjust)
return new

case int() as adj:
new = DDice(*self.classes).plus(self.adjust + adj)
return new

case _
return NotImplemented

def _ _radd__(self, die_class: Any) -> "DDice":
match die_class:

case type() if issubclass(die_class, Die):
new_classes = (die_class,) + self.classes
new = DDice(*new_classes).plus(self.adjust)
return new

case int() as adj:
new = DDice(*self.classes).plus(self.adjust + adj)
return new

case _
return NotImplemented

These two methods are similar in many ways. Adding more Die objects tries to preserve the
ordering. Adding a new adjustment increases the total adjustments. We check for three separate

kinds of operands:

« If the argument value, die_class, is a type, and it’s a subclass of the Die class, then we’re

174 Abstract Base Classes and Operator Overloading

adding another Die object to a DDice collection. It’s an expression like DDice(D6) + D6 +

D6. It creates a new DDice collection.

« If the argument value is an integer, then we’re adding an adjustment to a set of dice. This is
something like DDice(D6, D6, D6) + 2. This, also, creates a new DDice collection with a

new adjustment value.

« If the argument value is neither a subclass of Die nor an integer, then something else is
going on, and this class doesn’t have an implementation. This may be some kind of bug, or
it might be that the other class involved in the operation can provide an implementation.

Returning NotImplemented gives the other object a chance at performing the operation.

Because we’ve provided __radd__() as well as __add__(), the operator can be used with a DDice
on the left or right side of the +. We can use expressions such as D6 + DDice(D6) + D6 and 2 +

DDice(D6, D6).

Python operators are completely generic, and the expected type hint must be Any. We can only
narrow down the applicable types through runtime checks. The match-case statement permits
very flexible structural type matching. Tools such as mypy are astute in following branching logic

to confirm that an integer object was properly used in an integer context.

“But wait,” you say. “My favorite game has rules that call for 3d6 + 2” This is shorthand for rolling
three six-sided dice and adding 2 to the result. In many TTRPGs, this kind of abbreviation is used

to summarize the dice.
Can we use multiplication to do this? Can we permit 3 * DDice(D6) + 27

There’s no reason why not. For multiplication, we only need to worry about integers. A dice
expression such as D6 * D6 isn’t used in any of the rules, but 3*D6 seems really common. Here’s

the required special methods:

def __mul__ (self, n: Any) -> "DDice":
match n:
case int():
new_classes = self.classes * n
return DDice(*new_classes).plus(self.adjust)
case _
return NotImplemented

_rmul__ = _ mul__

Chapter 6 175

These two methods are actually identical. We can use a simple assignment, __rmul__ = __mul__,

to create a second reference to the method with a new name. This method follows a similar design
pattern to the __add__() and __radd__() methods. For any given Die class, we’ll create several
instances of the given class. This lets us use 3 * DDice(D6) + 2 as an expression to define a
dice-rolling rule. The Python operator precedence rules still apply, so the 3 * DDice(D6) portion is

evaluated first.

Python’s use of the various __op__() and __rop__ () methods works out extremely well for applying
the various operators to objects that are immutable: strings, numbers, and tuples being the primary
examples. Our handful of dice presents a bit of a head-scratcher because the state of the individual
dice can change. What’s important is that we treat the composition of the hand as immutable. Each

operation on a DDice object creates a new DDice instance.

What about mutable objects? When we write an assignment statement such as some_list +=
[some_item], we're mutating the value of the some_list object. The += statement does the same
thing as the more complex expression some_list.extend([some_item]). Python supports this
with operators with names such as __iadd__() and __imul__(). These are “in-place” operations,

designed to mutate objects instead of create new instances.

For example, consider the following:

>>> y = DDice(D6, D6)

>>> y += D6

This can be processed in one of two ways:
« We can implement __iadd__ (). The object can mutate itself in place to add one more dice.

« Ifwedon’timplement __iadd__(), the statement is evaluated asifitwerey = y.__add__(D6).
The object y creates a new, immutable object, and that’s given the old object’s variable name.

That’s how string_variable += “.” works: under the hood, string_variable is not mu-

tated; it’s replaced.

If it makes sense for an object to be mutable, we can support in-place mutation of a DDice object

with this method:

def __iadd__(self, die_class: Any) -> "DDice":
match die_class:
case type() if issubclass(die_class, Die):

176 Abstract Base Classes and Operator Overloading

self.classes += (die_class,)
self.dice = [dc() for dc in self.classes]
return self
case int() as adj:
self.adjust += adj
return self
case _
return NotImplemented

The __iadd__() method appends to the internal collection of dice. It follows rules similar to the
__add__() methods: when a class is provided, an instance is created, and it’s added to the self.dice

list; if an integer is provided, it’s added to the self.adjust value.

We can now perform incremental changes to a single dice-rolling rule. We can mutate the state of a

single DDice object using assignment statements. The creation of complex dice looks like this:

y = DDice(D6, D6)
y += D6

y +=2
y.
y.
6,

roll()
dice
2]

This builds the 3d6 + 2 dice roller in incremental pieces.

The use of the internal special method names allows for seamless integration with other Python
features. We can build classes using collections.abc that fit with existing collections. We can

override the methods implementing the Python operators to create easy-to-use syntax.

We can also leverage the special method names to add features to Python’s built-in generic collections.

We'll turn to that topic next.

Extending built-ins
Python has two collections of built-ins that we might want to extend. We can broadly classify these

into the following:

« Immutable objects, including numbers, strings, bytes, and tuples. These will can have
extended operators defined. In the Operator overloading section of this chapter, we looked at

how we can provide arithmetic operations for objects of a Dice class.

Chapter 6 177

« Mutable collections, including sets, lists, and dictionaries. When we look at the definitions in
collections.abc, these are sized, iterable containers, three distinct aspects that we might
want to focus on. In the The collections.abc module section of this chapter, we looked at

creating an extension to the Mapping ABC.

There are other built-in types, but these two groupings are generally applicable to a variety of

problems. For example, we could create a new collection: a dictionary that rejects duplicate values.

The built-in dictionary always updates the value associated with a key. This can lead to odd-looking

code that works. Take the following example:

>>>d = {"a": 42, "a": 3.14}
>>> d

{'a': 3.14}

Also look at the following example:

>>> {1: "one", True: "true"}

{1: '"true'}

These are well-defined behaviors. It may seem odd to provide two keys in the expression but have
only one key in the result, but the rules for building dictionaries make these inevitable and correct

(even if confusing) results.

We may, however, not like the behavior of silently ignoring a key. It may make our application
needlessly complex to worry about the possibility of duplicates. Let’s create a new kind of dictionary

that won’t update items once they’ve been loaded.

Studying collections.abc, we need to extend a mapping, with a changed definition of only the
__setitem__() method to prevent updating an existing key. Working at the interactive Python

prompt, we can try this:

>>> from collections.abc import Hashable, Any
>>> class NoDupDict(dict[Hashable, Any]):
def __setitem__(self, key, value) -> None:

if key in self:
raise ValueError(f"duplicate {key!xr}")
super().__setitem__(key, value)

178 Abstract Base Classes and Operator Overloading

When we put it to use, we see the following:

>>> nd = NoDupdict()

>>> nd["a"] =

>>> nd["a"] = 2

Traceback (most recent call last):

File "<doctest examples.md[1@]>", line 1, in <module>
nd["a"] = 2
File "<doctest examples.md[7]>", line 4, in __setitem__
raise ValueError(f"duplicate {key!r}")
ValueError: duplicate 'a'

We’re not done, but we're off to a good start. This dictionary rejects duplicates under some
circumstances. However, it isn’t blocking duplicate keys when we try to construct a dictionary

from another dictionary. We don’t want this to work:

>>> NoDupdict({"a": 42, "a": 3.14})

{'a': 3.14}

So we’ve got some work to do. Some expressions properly raise exceptions, whereas other expres-

sions still silently ignore duplicate keys.

The problem is not all methods that set items in the mapping are using the __setitem__() special
method. There are a number of methods that change the state of a dictionary. To alleviate the

problem demonstrated, we’ll need to override the __init__() method, also.

We'll also need to add type hints to our initial draft. This will let us leverage tools such as mypy to

confirm that our implementation will work in general. Here’s a version with __init__ () added:

from collections.abc import Iterable, Hashable, Mapping
from typing import cast, Any

type DictInit = (
Iterable[tuple[Hashable, Any]]
| Mapping[Hashable, Any]
| None

Chapter 6 179

class NoDupdict(dict[Hashable, Any]):
def __setitem__(self, key: Hashable, value: Any) -> None:
if key in self:
raise ValueError(f"duplicate {key!r}")
super().__setitem__(key, value)

def __init__ (self, init: DictInit = None, **kwargs: Any) -> None:
match init:
case Mapping():
super().__init__ (init, **kwargs)
case Iterable():
for k, v in cast(Iterable[tuple[Hashable, Any]l], init):
self[k] = v
case None:
super().__init__ (**kwargs)
case

super().__init__(init, **kwargs)

This version of the NoDupDict class implements an __init__ () method that will work with a variety
of data types. We enumerated the various types using the DictInit type variable. This hint is a
union of three types: a sequence of key-value pairs, a mapping, or a None object. (For more on
type unions, see Chapter 7.) In the case of a sequence of key-value pairs, we can use the previously

defined __setitem__() to raise an exception in the event of duplicate key values.

This covers the initialization use cases, but — still — it doesn’t cover every method that can update a

mapping. We still have to implement update(), setdefault(),__or_ (),and __ior_ () to extend

all the methods that can mutate a dictionary. While this is a pile of work to create, the work is
encapsulated in a dictionary subclass that we can use in our application. This subclass is completely
compatible with built-in classes; it implements many methods we didn’t write, and it has one extra

feature we did write.

We’ve built a more complex dictionary that extends the core features of a Python dict class.
Our version adds a feature to reject duplicates. We’ve also touched on the use of abc.ABC (and
abc.ABCMeta) to create ABCs. There are times when we might want to take more direct control of

the mechanics of creating a new class. We’ll turn next to metaclasses.

180 Abstract Base Classes and Operator Overloading

Metaclasses

As we noted earlier, creating a new class involves work done by the type class. The job of the
type class is to create an empty class object so the various definitions and attribute assignment

statements can then initialize the final, usable class we need for our application.

Figure 6.3 shows how type works:

source_code
“class MyClass: ..."
T

Y
attributes and methods
"def __init_0: ..."

T
|
N 2
type

__prepare__()
_new_0
EAS =V

I
|creates metaclass

MyClass

_init_0

Creates \creates

[instance_1 \ | instance_2 \

Figure 6.3: How type creates MyClass

The class statement is used to locate the metaclass; if no special metaclass= is provided, then
the type class is used. The type class will prepare a new, empty dictionary, called a namespace,
and then the various statements in the class populate this container with attributes and method
definitions. Finally, the “new” step completes the creation of the class; this is generally where we

can make our changes.

Chapter 6 181

Figure 6.4 shows how a new class, SpecialMeta, builds a new class for us:

source_code
"class MyClass: ..."
T

type

attributes and methods

__prepare_ () "def __init_0:..."
new()

N

SpecialMeta

_prepare__()
new()

/!

!
|creates metaclass
\

~4

MyClass

_init_0

creates Creates

| instance_1 I | instance_2]

Figure 6.4: Extending the type class

If we use the metaclass= option when creating a class, we change the metaclass that’s used. In
the preceding diagram, SpecialMeta is a subclass of the type class, and it can do some special

processing for our class definitions.

While there are some clever things we can do with this technique, it’s important to keep meta-
classes in perspective. They change the way class objects are built, with the potential to redefine
what it means to be a class. This can drastically shift the foundation of Pythonic object-oriented
programming. It can lead to frustration when people reading and maintaining the code can’t figure

out why something works; it should not be undertaken lightly.

Let’s look at a metaclass that builds a few small features into a class definition for us. Let’s continue
to extend the dice simulation examples from earlier in this chapter. We may have a number of
classes of die, each an instance of the abstract base class Die. We’d like them all to have an audit
log surrounding the roll() method supplied by the implementation. We’d like to track each roll

separately, perhaps so someone can review them for their statistical validity.

182 Abstract Base Classes and Operator Overloading

Because we don’t want to force the programmers of various kinds of dice to include any extra or
new code, we prefer to add logging to the ABC for all Die classes. We can also adjust the concrete

implementation of the roll() method to create logging output.

This is a tall order. It’s made a little more challenging because we’re working with abstract classes.
This requires some care to disentangle abstract class construction from concrete class construction.

We don’t want to force programmers to change their concrete Die class definitions.

To solve this problem using metaclasses, we need to do three things to each concrete Die-related

class that gets built:

1. Extend the ABCMeta metaclass. We need to support the @abc.abstractmethod decoration,

so we want all the existing metaclass features from the built-in type metaclass.

2. Inject a logger attribute into each class. It’s common to have the logger name match the
class name; this is easy to do in a metaclass. We can create the logger as part of the class,

prior to any instances of the class being created.

3. Wrap the concrete rol1l() method into a function that uses the programmer’s supplied
roll() method, but also writes a message to the logger. This is similar to the way a method

decorator works.

The metaclass definition needs a __new__() method to make slight adjustments to the way the final
class is built. We don’t need to extend the __prepare__() method. Our __new__() method will use

abc.ABCMeta.__new__() to build the final class object. It looks like this:

import logging
from functools import wraps
from typing import Any

class DieMeta(abc.ABCMeta):
def _ _new_ (

cls: type,
name: str,
bases: tuple[type, ...1],

namespace: dict[str, Anyl],
**kwargs: Any,
) -> "DieMeta":
if "roll" in namespace and not getattr(
namespace["roll"], "__isabstractmethod__", False

Chapter 6 183

The

namespace.setdefault("logger", logging.getlLogger(name))
original_method = namespace["roll"]

@wraps(original_method)

def logged_roll(self: "DielLog") -> None:
original_method(self)
self.logger.info(f"Rolled {self.face}")

namespace["roll"] = logged_roll
new_object = cast(

"DieMeta", abc.ABCMeta._ _new__(cls, name, bases, namespace)
)

return new_object

__new__() method is given a bewildering pile of argument values:

The metaclass parameter is a reference to the metaclass doing the work. Python doesn’t
generally create and use instances of metaclasses. Instead, the metaclass itself is passed as a
parameter to each method. It’s a bit like the self value provided to an object, but it’s the

class, not an instance of a class.
The name parameter is the name of the target class, taken from the original class statement.

The bases parameter is the list of base classes. These are the mixins, sorted into method
resolution order. In this example, it will be the superclass we’ll define that uses this metaclass,

Dielog, shown shortly.

The namespace parameter is a dictionary that was started by the __prepare__ () method of
the built-in type class. The dictionary was updated when the body of the class was executed;
def statements and assignment statements will create items in this dictionary. When we get
to the __new__() method, the methods (and variables) of the class are staged here, waiting

to build the final class object.

The kwargs parameter will have any keyword arguments provided as part of the class
definition. If we used a statement such as class D6L(DieLog, otherparam=“something”)

to create a new class, then the otherparam would be one of the kwargs to __new__ ().

184 Abstract Base Classes and Operator Overloading

The __new__() method must return the new class definition. Generally, this is the result of using
the superclass __new__() method to build the class object. In our case, the superclass method is

abc.ABCMeta.__new__ ().

Within this method, the if statement checks to see whether the class being built defined the needed
roll () method. If the method is marked with the @abc . abstractmethod decorator, then the method
will have an attribute of __isabstractmethod__ and the value of the attribute will be True. For a
concrete method — without a decorator — there will be no __isabstractmethod__ attribute. The

condition confirms that there’s a ro11() method and whether that rol1() method is concrete.

For classes with a concrete roll() method, we’ll add “logger” to the namespace that was built,
providing a default value of an appropriately named logger. If a logger is already present, we’ll

leave it in place.

Next, namespace[“ro0ll”] picks out the function defined in the concrete class, the ro11 method.
We'll define a replacement method, 1ogged_roll. To be sure the new logged_roll() method looks
like the original method, we’ve used the @wraps decorator. This will copy the original method name
and docstring onto the new method, making it look like the definition originally present in the
class. This revised definition is then put back into the namespace so it can be incorporated into the

new class.

Finally, we evaluate abc.ABCMeta.__new__() with the metaclass, the class name, the base classes,
and the namespace that we modified if there was a concrete implementation of the ro11() method.

The __new__() operation finalizes the class, doing all the original Python housekeeping.

It can be awkward to use a metaclass; for this reason, it’s common to provide a superclass that uses
the metaclass. This means our application can extend the superclass without having to fuss about

with an extra metaclass= parameter in the class definition:

class Dielog(metaclass=DieMeta):
logger: logging.lLogger

def __init_ (self) -> None:
self.face: int
self.roll()

@abc.abstractmethod
def roll(self) -> None:

Chapter 6 185

This superclass, DielLog, will built by the DieMeta metaclass. Any subclass of this class will also be

built by the DieMeta metaclass.

Now, our application can create subclasses of DielLog, without having to worry about the details
of the metaclass: we don’t have to remember to include metaclass= in the definition. Our final

application classes are quite streamlined:

class D6L(Dielog):
def roll(self) -> None:
"""Some documentation on D6L"""
self.face = random.randrange(1l, 7)

We’ve created a dice roller here that logs each roll in a logger named after the class. Here’s how it

looks when using it:

test_del = """
>>> random.seed(42)
>>> d = D6L()

>>> d2 = D6L()
>>> d2.face
6

When we configure logging, we’ll see the roll details written to the log. An easy way to enable
logging is to use this line of code: 1logging.basicConfig(level=logging.INF0). There are a lot of
details in the 1logging module. See the Python standard library documentation for how to configure
it.

The details of the logging aspect of this D6L class are completely divorced from the application-
specific processing of this class. We can change the metaclass to change details of the logging,

knowing that all of the relevant application classes will be changed when the metaclass changes.

Since a metaclass changes how a class is built, there are no boundaries on the kinds of things a
metaclass can do. The common advice is to keep the metaclass features very small because they’re
obscure. For example — as written — the logged_roll() method of the metaclass will discard any

return value from the concrete roll() method in a subclass. This may be surprising.

186

Abstract Base Classes and Operator Overloading

Recall

Here are some of the key points in this chapter:

Using ABC definitions is a way to create class definitions with placeholders. This is a
handy technique, and can be somewhat clearer than using raise NotImplementedError in

unimplemented methods.

ABCs and type hints provide ways to create class definitions. An ABC is a type hint that can
help to clarify the essential features we need from an object. It’s common, for example, to

use Iterable[X] to emphasize that we need one aspect of a class implementation.

The collections.abc module defines ABCs for Python’s built-in collections. When we want
to make our own unique collect class that can integrate seamlessly with Python, we need to

start with the definitions from this module.

Creating your own ABC leverages the abc module. The abc.ABC class definition is often a

perfect starting point for creating an ABC.

The bulk of the work is done by the type class. It’s helpful to review this class to understand

how classes are created by the methods of type.

Python operators are implemented by special methods in classes. We can — in a way —
“overload” an operator by defining appropriate special methods so that the operator works

with objects of our unique class.

Extending built-ins is done via a subclass that modifies the behavior of a built-in type. We’ll

often use super () to leverage the built-in behavior.

We can implement our own metaclasses to change — in a fundamental way — how Python

class objects are built.

Exercises

We’ve looked at the concept of defining abstract classes to define some — but not all — common

features of two objects. Take a quick look around to see how you can apply these principles to your

own work. A script can often be restated as a class, with each major step of the work a separate

method. Do you have similar-looking scripts that — perhaps — share a common abstract definition?

Another place to find things that are partially related is in the classes that describe data files. A

spreadsheet file often has small variations in layout; this suggests they have a common abstract

relationship, but a method needs to be part of an extension to handle the variations in the layouts.

Chapter 6 187

When we think about the DDice class, there’s yet another enhancement that would be nice. Right
now, the operators are all defined for DDice instances only. In order to create a hand of dice, we
need to — somewhere — use a DDice constructor. This leads to 3*DDice (D6)+2, which seems to be
needlessly wordy. It would be nicer to be able to write 3*d6+1. This implies some changes to the

design:

1. Since we can’t (easily) apply operators to classes, we have to work with instances of classes.
If we use d6 = D6() to create a Die instance, then d6 becomes a viable operand. can be an

operand.

2. The Die class needs a __mul__() method and an __rmul__() method. When we multiply a
Die instance by an integer, this will create a DDice instance populated with the die’s type,
DDice(type(self)). This is because DDice expects a type and it creates its own instances

from the type.

This creates a circular relationship between Die and DDice. It doesn’t present any real problems
because both definitions are in the same module. We can use strings in the type hints, so having a
Die method use a type hint of -> “DDice” works out nicely. Tools such as mypy can use strings

for forward references to types that haven’t been defined yet.

Now, look back over some of the examples we looked at in previous chapters. Can we leverage an
abstract class definition to perhaps simplify the various ways in which Sample instances need to

behave?

For an example application, refer to Chapter 1. The “Reading a big script” section shows a script
that does a lot of processing. Is there a place for an ABC that defines the common features of a
test result? One subclass might be a success and the other subclass might be a failure. Does this

abstraction help the design?

Look at the DieMeta example. As written, the logged_roll() method of the metaclass will discard
any return value from the concrete roll() method in a subclass. This may not be appropriate in all
cases. What kind of rewrite is required to make the metaclass method wrapper return a value from

the wrapped method? Does this change the DielLog superclass definition?

Can we use the superclass to provide a logger? (It seems like the answer should be a resounding
“yes”) More importantly, can we use a decorator to provide logging for a concrete rol1() method?
Write this decorator. Then consider whether or not we can trust developers to include this decorator.
Should we trust other developers to use the framework correctly? While we can imagine developers

forgetting to include the decorator, we can also imagine unit tests to confirm that log entries are

188 Abstract Base Classes and Operator Overloading

written. Which seems better: a visible decorator with a unit test or a metaclass that tweaks code

invisibly?

Summary

In this chapter, we focused on identifying objects, especially objects that are not immediately
apparent. Objects should have both data and behaviors, but properties can be used to blur the
distinction between the two. The DRY principle is an important indicator of code quality, and

inheritance and composition can be applied to reduce code duplication.

In the next two chapters, we’ll cover several of the built-in Python data structures and objects,

focusing on their object-oriented properties and how they can be extended or adapted.

Python Type Hints

Throughout this book, almost all the examples have included type hints. Python added syntax
for “annotations” back in Python 3.0. (See PEP 3107: https://peps.python.org/pep-3107/.)
This syntax was applied to the problem of type hints starting with Python 3.6. (See PEP 526:
https://peps.python.org/pep-8526/.) Since then, the idea of a formalized type system has

evolved and grown.

Currently, the details are in https://typing.readthedocs.io/en/latest/spec/. This document
describes the type system in detail.

The type hints are optional, and some developers feel they’re a burden because it’s slightly more

code that they have to think about.

The type hints provide important clarification, and many developers feel they’re essential for
describing the designer’s intention. Further, the type hints can be checked by tools, giving us
helpful feedback when we’ve done something that may not work. Some tools make extensive use
of type hints. The dataclases module, for example, builds a class for us, using the type hints in the

template class definition we provide.
In this chapter, we’ll look a little more deeply at type hints. We’ll cover the following topics:

« Type hints and how they’re used in object-oriented programming

https://peps.python.org/pep-3107/
https://peps.python.org/pep-0526/
https://typing.readthedocs.io/en/latest/spec/

190 Python Type Hints

« Static type checking, and lint-checking tools
« Runtime value checking using packages such as Pydantic

We'll start with an overview of some basics of hints as they related to object-oriented programming

in Python.

Type hints and object-oriented programming

Almost all the examples so far have included type hints. We’ve used them for argument values in

class methods. We’ve used them for return types of methods, too.

Consider a class model like the one in Figure 7.1:

@ Polygon © Field ‘

points: list[Point] |

points: list[Point]

—] search(points, cover) -> list[Square] \
ﬂ /_

@ Rectangle © Point
I ————— x: float
is_valid() -> bool y: float
contains(Point) -> bool distance(Point) -> float

{@ Square

Figure 7.1: A typical class design

We’ve defined an abstract class, Polygon, and several concrete classes, Point, Rectangle, Square,

and Field. We've referred to two built-in classes, 1ist and float.

It’s possible, using UML, to carefully annotate the diagram with enough graphic details to make the
attribute definitions redundant. Doing this can clutter the diagram with boxes and text, making it

difficult to interpret.

It seems much more clear to capture the essential relationships with Python type hints than visual
cues. Text such as points: list[Point] seems clear enough to help understand what a Polygon is.
The step from sketching on a whiteboard to the initial outline of the code isn’t as big when we’ve

used type annotations to capture the essential ideas.

There are two essentials to starting with a UML sketch and moving toward Python:

Chapter 7 191

« Annotate the attributes as well as method parameters and return values with type names. For
parameters, providing both the parameter name and type tends toward clutter, so focus on the
type. For an example, look at the Rectangle class. The definition of the contains () method
isn’t valid Python, but it suggests what the Python will look like: def contains(self,

point: Point) -> bool:.

« Leverage the generic built-in types, such as list, dict, set, and tuple. We'll look at generics

later, in section Generic types.

Type hint tools such as Mypy and Pyright automatically focus on functions and methods that
have complete hints for all parameters and the return type. Since hints are optional, definitions
without hints are quietly ignored. We can use command-line options to report on any definitions

with incomplete or missing type hints.

For the most part, the core annotation syntax is very easy to use. Therefore, we strongly suggest

using. We’ll move on to some more nuanced type hint constructs.

Optionality and unions

The Python language includes an object, None, that doesn’t have any attributes, and generally raises
an exception for most operations. It behaves like False in a Boolean context. It’s commonly used

as a placeholder object.

One of the most common uses is to define optional parameters to a function. Consider this little

function:
from random import randint

def roll_dice(sides: list[int] | None = None) -> list[int]:
dice_mix = sides if sides is not None else [6, 6]
return [randint(1l, s) for s in dice_mix]

The value of sides is either a list or the None object. The syntax of type | type is a kind of union

between two types. We specify that something is optional by using | None.

In this example, we’'ve permitted the following two ways of using this rolldice() function:

>>> roll_dice([6, 6, 6])
[6, 1, 1]

>>> roll_dice()

192 Python Type Hints

IIIIHIIIHiII

A “union” of types is the fancy term for a collection of alternative types. The syntax Python uses
for type hints allows the None object as a stand-in for NoneType. While it’s technically true that

None is the one-and-only instance of NoneType, it seems a bit fussy to insist on a type here.

Consider this more sophisticated function:

from random import randint

def roll_ndice(
dice: int | list[int] | None = None,
faces: int | None = None
) -> list[int]:
match dice:
case int() as n:
dice_mix = n * [faces or 6]
case None:
if faces is None:
dice_mix = [6, 6]
else:
dice_mix = [faces]
case list() as dice_mix:
assert faces is None, "faces must be None when dice is a list"
case _
raise TypeError(f'"can't parse {dice=!r}")
return [randint(1l, s) for s in dice_mix]

The value for dice can be any of three distinct types. The match statement determines what to do

with each of the variant types.

At some point, a union can get out of hand. After three or four types, we might want to rethink
our design and create a proper class hierarchy, with distinct subclasses instead of a union of a pile
of types. If we switch to a class hierarchy, leveraging polymorphism, then the processing details

become methods of the classes instead of cases in a match-case statement.

Between subclasses and unions, we have all the type complexity we can make use of. A union is
sometimes called “one of”: the object will have one of the types named. A subclass hierarchy can
be called “all of”: the object contains attributes defined by all of the parent types. Next, we’ll take

a second look at the complications of methods that have — perhaps — too many alternatives for

Chapter 7 193

parameters.

Overloaded methods

All of Python code is generic with respect to type. If we don’t use type hints, it’s the same as using
the Any type. Consequently, we can design Python functions that accept, well, anything. This means
the body of the function needs to disentangle the parameters to determine what to do. The match

statement was designed for kind of disentangling of complex parameters.

In the example shown in the previous section, there is a constraint that isn’t clearly defined in the
type hints. Consequently, type-checking tools, such as Mypy and Pyright, can’t be absolutely sure

we’re using the roll_ndice() function properly.

Here’s the function’s signature — the mix of parameters and return types:

def roll_ndice2(
dice: int | list[int] | None = None,
faces: int | None = None
) -> list[int]:

This function has two distinct rules for how it can be used:

« Provide a list of dice sizes, for example, roll_ndice([10, 10]). When providing a list, a

value for the faces parameter must not be applied.

« Provide the number of dice and, optionally, the number of faces, for example, rol1l_ndice(2,

10).

The first form for the parameters (only providing a list) isn’t specified in the type hints, and can’t

be checked in advance.

We have other approaches available, most notably, defining the function as having overloaded type
signatures. This uses the @overload decorator from the typing module. To use this, we write out

the two competing signatures, and a final implementation.

In our case, we have two overloaded signatures, which we could define like this:

from typing import overload

@overload
def roll_ndice2(

194 Python Type Hints

dice: list[int] | None
) -> list[int]:

@overload
def roll_ndice2(
dice: int | None = None,
faces: int | None = None
) -> list[int]:

def roll_ndice2(
dice: int | list[int] | None = None,
faces: int | None = None
) -> list[int]:
The body goes here...

There can be any number of alternative definitions. But, pragmatically, if you have too many,
your function might be too overwhelmingly complicated. These overload definitions are used by

type-hint checkers to make sure the function is used in one of the acceptable patterns.

The overloaded signatures need to be syntactically complete. Instead of an actual body, the Python
ellipsis is used: The pass statement is also a possibility, but the ellipsis has become a popular

way to mark code that will never be executed.

After the overloads comes the implementation method. Frequently, this will use match-case
statements to disentangle the argument values. This is the same as the previous roll_ndice
example. It’s important to note that the implementation doesn’t change; the overloaded definitions

are to help people (and tools) understand the alternatives for using the method.

Overloaded definitions often raise questions about the design. They suggest that, perhaps, too much

is going on in one function. In our example, there are two separate things going on:
« Figuring out the mix of dice to roll
+ Actually rolling the dice

The two overloaded function definitions suggest there are (at least) two ways to construct the mix
of dice. Very likely, there will be more good ideas. Perhaps this can be restated as an abstract
base class that defines the common dice-rolling procedure. We could then write two subclasses to

implement the two ways to specify the mix of dice.

Chapter 7 195

We’ve seen a number of type hint features. Another important part of Python are the generic types

and how we can provide more useful type hints based on these built-in types.

Generic types
Python comes with a large number of built-in types. Some of these are containers. A Python

container — such as a list — is generic with respect to the types it can contain.

Pragmatically, we’ll often write software that uses a list of integers. The generic list type accepts a
parameter, allowing us to use 1ist[int] to state that our software will use only integers in some

specific list.

Similarly, we might have a dictionary that maps strings to other strings. The dict[str, str]
type hint captures this mapping, telling people reading the code (and tools checking the code) the

intended use of the dictionary.

This can be composed, of course. We might have a set of two-tuples; the tuples are composed of a
pair of float values. This can be described by set[tuple[float, float]]]. Tools can examine the

code to be sure the structure is used appropriately.
Many built-in types are parameterized. Here’s a breakdown:
« As noted previously, the generic collections: set, 1ist, dict.

« The collection classes defined in the collections module are all generic, and accept param-

eters. These include defaultdict, ChainMap, Counter, and deque.
« The abstract base classes for collections, defined in the collections module are also generic.

« The typing.NamedTuple definition lets us define new kinds of immutable tuples and provide

useful names for the members. This will be covered in Chapter 8, and Chapter 9.

« A typing.TypedDict definition lets us define new kinds of dictionaries with specific keys
and specific types associated with the keys.

We'll use the generic collections heavily throughout the book. Python offers the generics to make it
easy to use a sophisticated data structure. Using the type hints can help make the application of the

generic data structure more clear.

The final topic we’d like to look at is the concept of protocols and how it helps with Python’s duck
typing.

196 Python Type Hints

Protocols and duck typing

Python has a number of built-in protocols. A protocol is used to define a narrow aspect of an object.

Consider, for example, objects that are containers, and support iteration. We describe these using
the protocol called Iterable. This protocol demands that an implementing class provide the

__iter__ () method.

What’s important about a protocol is that we don’t include the protocols in a class definition. We
include the required method, for example, the __iter_ () method. But we don’t include an explicit

marker that the class implements the protocol.

What we do in Python is write methods or functions that require objects that implement some
given protocol. We might, for example, change the dice examples shown previously to require

Iterable[int] instead of list[int].

The relevant statement is this:

return [randint(1l, s) for s in dice_mix]

The value of dice_mix can be any object that supports the Iterable protocol. This includes lists,
sets, dictionaries, tuples, strings, files, and any customized class with an __iter__() method. This

includes generator functions, also, since they’re iterable.

The function’s definition undergoes only the smallest change. Replace 1ist[int] with iterable[int]
in the parameter definitions and the case clause. The return type is still 1ist[int], since the ex-

pression is a list comprehension.

Using 1ist[int] for the parameter type is an artificial constraint: any iterable will work. Using the
Iterable[int] protocol specifies the barest minimum requirement for a source of integers that
allow this expression in the return statement to work properly. The definition lets tools warn us of

potential mistakes without placing needless constraints on the data types in use.

We can, of course, define our own protocols. They look a lot like class definitions, except they

extend the Protocol base class.

Python’s duck typing approach means any class that has the right methods or attributes can be
used; the class hierarchy isn’t important, the methods and attributes present at runtime are what’s
relevant. This mix of methods and attributes — outside the class inheritance hierarchy — can be
characterized with a protocol definition. When we’re using duck typing, we’re relying on a protocol.

The type hints provide a formal path so other people reading the code can understand the expected

Chapter 7 197

protocol.

Type hints aren’t used by Python at runtime. They’re used by tools that confirm that the code and
the annotations both agree. Next, we’ll look at the tools that we use to check our code for bits of

lint that might catch fire as well as disagreements between annotations and code.

Static checking and linting

The Pyright tool is commonly used to check the hints for consistency. Another option is the Mypy

tool. These tools are not built into Python, and require a separate download and install.

Installing tools
We talked about virtual environments and the installation of tools in Chapter 2, section Third party

libraries.
When using the built-in virtual environment manager, venv, we’ll often install tools with two steps:

1. Activate the environment if it’s not already active:

% source path/to/venv/bin/activate

Often, we’ll have put the environments in a handy common directory under our home

directory, with a short name, ~/venvs.

(Failing to activate the virtual environment for the project you’re working on leads to the
head-scratching puzzle: “I just installed it, why can’t I use it?” The solution is almost always

related to environment activation.)
2. Install the tools:

% python -m pip install ruff mypy pyright

We’ve listed three tools, you may not really want all three. It seemed easier to have one

example instead of three.

When using tools such as poetry or uv, then environment activation isn’t as important as making
sure the current working directory is the project’s top-level directory. The top-level directory has

the pyproject.toml file. The uv command to add a development tool is this:

% uv add --dev ruff mypy pyright

198 Python Type Hints

(Again, we’ve listed three tools, but you may not really want all three; it packs all the alternatives

into one example.)

Once the tools are installed, they can be integrated into the unit test processing for our software.
Our recommendation is to do type annotation checking after running the unit test suite. If the code
doesn’t work in the first place, checking the annotations isn’t always helpful. Once the code works,
it helps to make sure the annotations really do match the working code. Often, the annotations
didn’t evolve as fast as the code did. But sometimes — and these are very important problems to

solve — the code has drifted away from the annotations, and the code needs to be fixed.

Checking type hints
Let’s say we had a file, bad_hints.py, in a src directory, with these two functions and a few lines

to call the main() function:

def odd(n: int) -> bool:
return n % 2 !'= 0

def main() -> None:
print(odd("Hello, world!"))

if __name__ == "__main__":
main()

Let’s see what happens when we run the mypy command at the OS’s terminal prompt:

% mypy -strict src/bad_hints.py

The mypy tool is going to reveal a potential problem:

ch_07/sxc/bad_hints.py:15: error: Argument 1 to "odd" has incompatible type
! expected "int" [arg-typel

str";

The code inside the main() function will try to evaluate the odd() function using a str value. This
doesn’t match the type hint for odd() and indicates a potential error. When actually run the code,

we’ll see that Mypy was right all along; the code can’t work.

Chapter 7 199

We can also use Pyright for this kind of annotation checking.

Comparing tools
One basis for comparison is the pace with which tools are changed. One tiny comparison between
the two tools is an observation that the Pyright tool tends to handle the type statement somewhat

more cleanly than the Mypy tool.

See Mypy issue 15238 (https://github.com/python/mypy/issues/15238), which was closed
while this edition was being prepared. Also see Mypy 1.12 Released (https://mypy-1lang.bl
ogspot.com/2024/10/mypy-112-released.html), which adds support for PEP 695 (https:
//peps.python.org/pep-0695/).

Lint checking
Checking for lint — bits of fuzz that a dryer accumulates — is called linting. The bits of fuzz, when
they’ve accumulated near the heater in a dryer, can lead to a fire. Most of us check the lint filter

each time we use the dryer. (Others don’t; we sigh and roll our eyes at them.)

Our code can have places where we’ve done something less than ideal. Too much of this lint and the
code may not work because of some nuanced interactions among our poor programming practices.
The worst cases are situations where the problem seems to vanish when we try to debug it. For
example, enabling logging changes the internal processing in some nuanced way that either prevents
or solves the problem. These are often called “heisenbugs”, following from Werner Heisenberg’s
writings about the Observer Effect in quantum physics: the act of observation perturbs the thing
being observed. When we stick a thermometer into our chocolate sauce, the mechanism absorbs

some heat, changing the temperature of the sauce.

Tools such as ruff can be used to check our code for lint. It looks like this:

% ruff check src

This will examine all the . py files in the source directory. It will report on all the potential problems

in the code files in that directory.

For the example files in this book, we use a command-line option of -ignore E402,F811. This will

suppress reports of two potential problems:

+ E402: Module-level import not at top of file. Since we have multiple examples in a single file,

https://github.com/python/mypy/issues/15238
https://mypy-lang.blogspot.com/2024/10/mypy-112-released.html
https://mypy-lang.blogspot.com/2024/10/mypy-112-released.html
https://peps.python.org/pep-0695/
https://peps.python.org/pep-0695/

200 Python Type Hints

we often repeat the imports. For real-world Python code, the repetition is a bad idea.

+ F811: Redefinition of a name. Again, because we repeat imports, there will be names imported

more than once. A bad practice outside these text-book examples.

Tools to check type hints and tools to check for lint are critical to creating software that’s trustworthy.
There numerous choices. We encourage exploration to see which tools provide you with the most

useful diagnostic information.

Runtime value checking and the Pydantic
package

We’ve noted that Python’s type annotations have no runtime impact. This is true for the language
and much of the standard library. There are some cases where one can split a hair to claim that

type hints have some impact:

« The NamedTuple class definition uses the type hints to define the names of attributes in a

tuple

« The TypedDict class definition uses the type hints to define the names of attributes in a

dictionary

« The @dataclass decorator uses the type hints to define the names of attributes in a class

derived from the class definition we provide
(We’ll look at these alternatives in Chapter 8. This is a bit foreshadowing for the next chapter.)

In all of these cases, the annotation information is made available to type-checking tools. Once the
desired named tuple, typed dict, or data class has been constructed, there’s no additional runtime

performance impact from the annotations.

There are, however, third-party packages that can make deep use of type hints for runtime validation

of data. We'll take a quick look at one of these, the Pydantic package.
First, it must be installed.

When using a tool such as uv, this is done via the following command:

% uv add pydantic

This will update the pyproject.toml for the current project. The uv tool will install the package

Chapter 7 201

the next time the virtual environment needs to be synchronized.

We can use pydantic.dataclass instead of dataclasses.dataclass to create a class that can
validate input values. There are two general ways to provide the additional validation. One way is
to provide some additional methods that are used automatically. The other approach is to include

the validation rules as type annotations.

We'll start with an example using additional methods associated with a field. The provided method is
used during validation done while creating the object. Generally, there are three steps to validating

the data each individual field:

« Any validation processing with a mode of before can be done to clean up raw data. This

can be tricky because the raw data can be almost anything.
+ The built-in parsing and type conversion functions will validate the data.

+ Any customized after validation processing can be done. This is the default mode. It’s easier
to write because the essential type conversion has been done; this validation can focus on

ranges of values.

Additionally, the model — as a whole — can also be validated after the individual fields have been
checked. This is handy for situations where there are dependencies or consistency rules between

multiple fields.

Here’s one small example of a pydantic dataclass with a field validator:

from pydantic import field_validator, Field
from pydantic.dataclasses import dataclass

@dataclass

class Result:
success: bool
exit_code: int
duration: float

@field_validator('exit_code')
@classmethod
def must_be_non_negative(cls, v: int) -> int:
if v < 0:
raise ValueExrror('must be non-negative')
retuxrn v

202

Python Type Hints

This class definition — like Python’s internal dataclasses — comes with numerous features. In

addition, it will also validate individual fields. In this example, the exit_code field gets an additional

check to make sure it’s an integer that’s not negative.

We can combine the validation rules into the type annotation. This leverages the Annotated type

hint, defined in the typing module. The annotated definition looks like this:

from typing import Annotated
from pydantic impoxrt Field
from pydantic.dataclasses import dataclass

@dataclass
class Result2:

success: bool
exit_code: Annotated[int, Field(ge=0)]
duration: float

In this case, the type hint leads to some runtime behavior. The behavior is a check that’s more

detailed than a simple validation of the data type. The value must also be valid.

Recall

Some key points in this chapter are as follows:

Type hints help us clarify the relationships between objects.
We can use hints to show optional relationships, and unions of alternative relationships.

For methods with complex signatures, we can use hints to provide detailed characterization

of the various ways the method can be used.
We’ll make extensive use of generic types to clarify our design intent.

The core value proposition of duck typing depends on protocols that define the required

features of objects.

Tools help to validate the hints and the code properly align. All the examples in this book
were checked with Mypy and Pyright.

Use tools to check your code for the fuzzy bits of lint, too. These can build up and lead to

problems.

Chapter 7 203

Exercises

All the examples in the book use type hints. It’s time to make sure your projects are also using type

hints. First, make sure you have a hint-checking tool installed.

Since hints can be added gradually, it makes sense to put them in a little at a time. After putting
some hints in one of your exercises, be sure to run the hint-checking tool and see what error

messages you get.

For an example application, refer to Chapter 1. The “Reading a big script” section shows a script
that does a lot of processing. Some examples in this chapter show a way to describe some of the

JSON documents that are processed by this application.

It can help to extend the examples in this chapter that describe the rest of the JSON document.
Once the JSON document structure has been defined fully, the Pydantic class definitions can import
the raw JSON text directly to Python objects.

Summary

In this chapter, we’'ve taken a brief tour of the essential features of type hints (also known as
annotations). We’ve looked at the ways we can use hints to clarify the relationships among objects.
There are several different kinds of relationships among classes: some are optional, some involve

alternatives.

In the next chapter, we’ll look at the built-in Python data structures, and how we can apply these

classes to our own object-oriented designs.

204 Python Type Hints

Subscribe to Deep Engineering

Join thousands of developers and architects who want to understand how software is changing,

deepen their expertise, and build systems that last.

Deep Engineering is a weekly expert-led newsletter for experienced practitioners, featuring original
analysis, technical interviews, and curated insights on architecture, system design, and modern

programming practice.

Scan the QR or visit the link to subscribe for free:

https://packt.link/deep-engineering-newsletter

https://packt.link/deep-engineering-newsletter

Python Data Structures

Starting in Chapter 2, we introduced some foundational concepts in class definitions. Chapter 3 and
Chapter 6 both built on these foundational definitions to add features to a class.

In many examples, we’ve leveraged the built-in Python data structures. In this chapter, we’ll discuss
using these data structures as the basis for class definitions. We’ll touch on when they should be
used, and how best to make use of them.

The built-in classes are examples of generic types. When writing type hints, parameters can be
used to add details; these help clarify how a generic class will be used in a given code context.
Additionally, the built-in classes can also be extended by subclasses, where our application can add

features to a built-in class.
This chapter will look at several options for defining classes based on built-in types:

« A tuple is a container of data items. It’s a little awkward to extend the built-in tuple generic

to add methods. It’s far easier to create a new named tuple with data and methods.

« A @dataclass lets us define data elements and methods in a tidy package. This decorator
can build a number of standard features into a class, saving us from having to write a lot of

double-underscore (“dunder”) special methods.

« A dictionary can be used in ways that are similar to a tuple. This can work out nicely. We can

206 Python Data Structures

easily extend a dictionary to add methods unique to our application. And, we can formalize

the expected list of keys and data types for the dictionary with the typing.TypedDict hint.

« We'll also look at extending lists and sets to create collections that have additional features.

Tuples and named tuples

Tuples are objects that can store a specific number of other objects in sequence. A collection of
related data items is one important aspect of class design. A tuple is immutable, meaning we
can’t add, remove, or replace objects after a tuple has been created. This may seem like a massive
restriction, but the truth is, if you need to modify a tuple, you're using the wrong data type (usually,
a list type would be more suitable). The primary benefit of tuples’ immutability is a tuple of
immutable objects (such as strings and numbers and other tuples) has a hash value, allowing us to

use them as keys in dictionaries, and members of a set.

A tuple that contains a mutable structure, such as a list, set, or dict, isn’t composed of immutable

items, and doesn’t have a hash value. We’ll look closely at this distinction in the next section.

We can use Python’s built-in generic tuple class to store data. If we also want to associate behavior
with a type of tuple, we have two common choices. We can create a subclass of NamedTuple, or
we can write functions that work with tuples. We’ll look at this later, in the section Named tuples
via typing.Named Tuple. The functional approach is the subject of Chapter 9. A bad choice is to try
to extend the built-in tuple class. This is awkwardly complicated, and not recommended. Since a

tuple is immutable, the __init__ () method isn’t used.

Tuples overlap with the idea of coordinates or dimensions. A mathematical (x, y) pair or (r, g, b)
color are examples of tuples; the order matters, a lot: the color (255, 0, 0) looks nothing like (0, 255, 0).

The primary purpose of a tuple is to aggregate a fixed number of objects into one container.

We create a tuple by separating values with a comma. Usually, tuples are wrapped in parentheses
to make them easy to read and to separate them from other parts of an expression, but this is not
always mandatory. The following two assignments are identical (they record a stock, the current

price, the 52-week high, and the 52-week low, for a rather profitable company):

>>> stock = "AAPL", 226.20, 237.49, 164.075

>>> stock2 = ("AAPL", 226.20, 237.49, 164.075)

(When the first edition of this book was printed, this stock was trading around US$8 per share; the

Chapter 8 207

stock value has almost doubled with each edition of this book!)

If we're grouping a tuple inside of some other object, such as a function call, list comprehension, or
generator, then the parentheses are required. For example, the following function accepts a tuple
and a date, and returns a tuple of the date and the middle value between the stock’s high and low

value:

>>> import datetime
>>> def middle(stock, date):
symbol, current, high, low = stock

. return (((high + low) / 2), date)
>>> middle(("AAPL", 226.20, 237.49, 164.075), datetime.date(2024, 11, 22))
(200.7825, datetime.date(2024, 11, 22))

In this example, a new two-tuple is created directly inside the function call. The two items are
separated by a comma and the entire tuple is cuddled up inside parentheses. When Python displays
a tuple, it uses what’s called the canonical representation; this will always include ()s, making the
()s a common practice even when they’re not — strictly — required. The return statement, in the

preceding example, has redundant ()s around the tuple it creates.

For more information on the syntax, see section 5.3 (nttps://docs.python.org/3/tutorial/dat

astructures.html#tuples-and-sequences) of the Python Tutorial.

We can sometimes wind up with a statement like this:

It’s sometimes surprising that the a variable will be a one-tuple. The trailing comma

is what creates an expression list with a single item.

The middle () function also illustrates tuple unpacking. The first line inside the function unpacks
the stock parameter into four different variables. The tuple has to be exactly the same length as
the number of variables, or it will raise an exception. (As noted previously, if the number of items

can vary, the tuple is likely the wrong choice of data structure.)

Unpacking is a very useful feature in Python. A tuple groups related values together to make

storing and passing them around simpler; the moment we need to access the pieces, we can unpack

https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

208 Python Data Structures

them into separate variables. Of course, sometimes we only need access to one of the variables in
the tuple. We can use the same syntax that we use for other sequence types (lists and strings, for

example) to access an individual value:

>>> stock = "AAPL", 226.20, 237.49, 164.075
>>> high = stock[2]

>>> high
237.49

We can even use slice notation to extract larger pieces of tuples, as demonstrated in the following:

>>> stock[1:3]

(226.2, 237.49)

These examples, while illustrating how flexible tuples can be, also demonstrate a disadvantage:
readability. How does someone reading this code know what is in position 2 of a specific tuple? If
there’s some unpacking code nearby, they can guess, using the name of the variable we assigned it
to. But seeing s[2], there’s would be no such hint. We don’t want to force readers to paw through

code to find where the tuple was packed or unpacked to discover what it means.

Accessing tuple members directly is fine in some circumstances, but don’t make a habit of it. The
index values become what we might call magic numbers: numbers that seem to come out of thin air
with no apparent meaning within the code. This opacity is the source of many coding errors and
leads to hours of frustrated debugging. Try to use tuples only when you know that all the values
are going to be useful at once and it’s normally going to be unpacked when it is accessed. The
ideals are things such as (x, y) coordinate pairs and (r, g, b) colors: the number of items is fixed,

the order matters, and the meaning is clear.

One way to provide some useful documentation is to define helper functions. This can help to
clarify the way a tuple is used. It’s not widely used in Python, but is common in other functional

programming languages. Here’s an example:

>>> def high(quote):
symbol, current, high, low = quote

. return high
>>> high(stock)
237.49

Chapter 8 209

We need to keep these helper functions collected together into a single namespace. Doing this
causes us to suspect that a class definition can be better than a tuple with a lot of helper functions.
The typing.NamedTuple class lets us both name the attributes of a tuple, and bundle in useful
methods.

Named tuples via typing.NamedTuple

Named tuples are tuples with attitude. They are a great way to create an immutable grouping of
data values. When we define a named tuple, we’re creating a subclass of typing.NamedTuple,
based on a list of names and data types. We don’t need to write an __init__() method; it’s created
for us. For more background, see Modern Python Cookbook, Chapter 7, for recipes related to named

tuples.

Here’s an example:

from decimal import Decimal
from typing import NamedTuple

class Stock(NamedTuple):
symbol: str
current: Decimal
high: Decimal
low: Decimal

This new class will have a number of methods, including __init_ (), __repr_ (), __hash__(),

and __eq__ (). These will be based on the generic tuple processing with the added benefit of names
for the various items. There are more methods, including comparison operations. Here’s how we

can create a tuple of this class. It looks almost like creating a generic tuple:

>>> Stock("AAPL", Decimal('226.20'), Decimal('237.49'), Decimal('164.075'))

Stock(symbol="'AAPL', current=Decimal('226.20'), high=Decimal('237.49'),
low=Decimal('164.075"'))

We can use keyword parameters to make things more clear:

>>> s2 = Stock("AAPL", Decimal('226.20'), high=Decimal('237.49'),
low=Decimal('164.075"))

>>> 52

210 Python Data Structures

Stock(symbol="AAPL', current=Decimal('226.20'), high=Decimal('237.49"),

low=Decimal('164.075"'))

The constructor must have the exact number of arguments to create the tuple. Values can be passed

in as positional or keyword arguments.

It’s important to recognize that the names are provided at the class level, but we are not actually
creating class-level attributes. The class-level names we supply are used to build the __init__ ()

method; each instance will have the names we provide for the positions within the tuple.

A resulting instance of our NamedTuple subclass, Stock, can then be unpacked, indexed, sliced, and
otherwise treated like a normal tuple. Here’s the bonus; we can also access individual attributes by

name as if it were an object:

>>> s2.high

Decimal('237.49")

>>> s2[2]

Decimal('237.49")

>>> symbol, current, high, low
>>> high

Decimal('237.49")

Named tuples are perfect for many use cases. Like strings, tuples and named tuples are immutable,
so we cannot modify an attribute once it has been set. For example, the current value of this
company’s stock has gone down since we started this discussion, but we can’t set the new value, as

can be seen in the following:

>>> s2.current = Decimal('229.87")
Traceback (most recent call last):

s2.current = Decimal('229.87"')
VAVAVAVAVAVAVAVAVAVAN

AttributeError: can't set attribute

The immutability refers only to the tuple itself. This can seem odd, but it’s a consequence of the
definitions of an immutable tuple. An immutable tuple can contain mutable elements. Consider the

following tuple that contains a mutable list:

Chapter 8 211

>>> t = ("Relayer", ["Gates of Delirium", "Sound Chaser"])
>>> t[1].append("To Be Over")

>>> t
('Relayer', ['Gates of Delirium', 'Sound Chaser', 'To Be Over'])

The object, t, is a tuple, which means it’s immutable: it contains a string and a list. The mutability
of a list inside the t object has nothing to do with immutability of the containing object. A list is
mutable, irrespective of context. The tuple, t, is immutable—nothing can be added or removed. The

mutable list is always part of t, even if items within the list come and go.

Because the example tuple, t, contains a mutable list, it doesn’t have a hash value. This shouldn’t
be too surprising. The hash() computation for the tuple must accumulate the hash values from
from each item within the tuple. Since the list value of t[1] can’t produce a hash, the t tuple — as

a whole — can’t produce a hash, either.

Here’s what happens when we try:

>>> hash(t)
Traceback (most recent call last):

hash(t)
TypeExrror: unhashable type: 'list'

We can create methods to compute derived values of the attributes of a named tuple. We can, for

example, redefine our Stock tuple to include the middle computation as a method (or @property):

class StockM(NamedTuple):
symbol: str
current: Decimal
high: Decimal
low: Decimal

@property
def middle(self) -> Decimal:
return (self.high + self.low) / 2

We can’t change the state, but we can compute values derived from the current state. This lets us
couple computations directly to the tuple holding the source data. Here’s an object created with

this definition of the Stock class:

212 Python Data Structures

>>> s m = StockM("AAPL", Decimal('226.20'), high=Decimal('237.49"),
low=Decimal('164.075"'))

>>> s_m.middle
Decimal('200.7825")

The middle() method is part of the class definition, not a separate function. The best part? Tools
such as mypy can look over our shoulder to be sure the type hints all match up properly throughout

our application.

The state of a named tuple is fixed when the tuple is created. If we need to be able to change stored

data, a dataclass may be what we need instead. We’ll look at those next.

Dataclasses

Since Python 3.7, dataclasses let us define ordinary objects with a clean syntax for specifying
attributes. They look — superficially — very similar to named tuples. This is a pleasant approach
that makes it easy to understand how they work. For more details, see Modern Python Cookbook,

Chapter 7 for recipes related to dataclasses.

Here’s a dataclass version of our Stock example:

from decimal import Decimal
from dataclasses import dataclass

@dataclass

class Stock:
symbol: str
current: Decimal
high: Decimal
low: Decimal

For this case, the definition is nearly identical to the NamedTuple definition.

The @dataclass decorator transforms the given code into a more complete class. We encountered

decorators in Chapter 6. We’ll dig into them deeply in Chapter 11.

As with NamedTuple, it’s important to recognize that the names are provided at the class level, but
are not actually creating class-level attributes. The class level names are used to build several

methods, including the __init__() method; each instance will have the expected attributes. The

Chapter 8 213

decorator transforms what we write into the more complex definition of a class with the expected

features.

Because dataclass objects can be stateful, mutable objects, there are a number of extra features
available. We’ll start with some basics. Here’s an example of creating an instance of the Stock

dataclass:

>>> s2 = Stock("AAPL", Decimal('226.20'), high=Decimal('237.49'),
low=Decimal('164.075"))
>>> 52

Stock(symbol="'AAPL', current=Decimal('226.20'), high=Decimal('237.49'),
low=Decimal('164.075"'))

Once instantiated, the Stock object can be used like any ordinary class. You can access and update

attributes as follows:

>>> s2.high

Decimal('237.49")

>>> s2[2]

Decimal('237.49")

>>> symbol, current, high, low

As with other objects, we can add attributes beyond those formally declared as part of the dataclass.

This isn’t always the best idea, but it’s supported because this is an ordinary mutable object:

Decimal('237.49")

>>> s2.current = Decimal('229.87')

Adding attributes like this isn’t available for frozen dataclasses, which we’ll talk about later in this

section. A frozen dataclass is — in a way — a lot like NamedTuple.

A dataclass provides a much more useful string representation than we get from the implicit
superclass, object. By default, dataclasses include an equality comparison, too. This can be turned

off in the cases where it doesn’t make sense.

Class definitions decorated with @dataclass also have many other useful features. For example,
you can specify a default value for the attributes of a dataclass. Perhaps the market is currently

closed and you don’t know what the values for the day are:

214 Python Data Structures

@dataclass

class StockDefaults:
name: str
current: Decimal = Decimal('0.00')
high: Decimal = Decimal('0.00")
low: Decimal = Decimal('0.00')

You can construct this class with just the stock name; the rest of the values will take on the defaults.

But you can still specify values if you prefer, as follows:

>>> StockDefaults("GOOG")

StockDefaults(name='GO0G', current=Decimal('@.00'), high=Decimal('0.00'),
low=Decimal('0.00"))

>>> StockDefaults("GOOG", Decimal('166.57'), Decimal('193.31'),

Decimal('129.40'))
StockDefaults (name='G0O0G', current=Decimal('166.57'),
high=Decimal('193.31"'), low=Decimal('129.40'))

We saw earlier that dataclasses support equality comparison by default. If all the attributes compare
as equal, then the dataclass objects as a whole also compare as equal. By default, dataclasses do
not support other comparisons, such as less than or greater than; this means they can’t be sorted.

However, you can easily add comparisons if you wish, demonstrated as follows:

@dataclass (order=True)

class StockOrdered:
name: str
current: Decimal = Decimal('0.00')
high: Decimal = Decimal('0.00")
low: Decimal = Decimal('0.00')

It’s okay to ask “Is that all that’s needed?” The answer is yes. The order=True parameter to the
decorator leads to the creation of all of the comparison special methods. This change gives us the

opportunity to sort and compare the instances of this class. It works like this:

>>> stock_orderedl = StockOrdered("GOOG", Decimal('166.57'),
Decimal('193.31'), Decimal('129.40'))

>>> stock_ordered3 = StockOrdered("GOOG")

Chapter 8 215

>>> stock_ordered3 = StockOrdered("GOOG", Decimal('142.45'),
high=Decimal('151.85"'), low=Decimal('84.95'))

>>> stock_orderedl < stock_ordered2

False

>>> stock_orderedl > stock_ordered2

True

>>> from pprint import pprint

>>> pprint(sorted([stock_orderedl, stock_ordered2, stock_ordered3]))

[StockOrdered(name="'GO0G',
current=Decimal('0.00'),
high=Decimal('0.00"),
low=Decimal('0.00')),

StockOrdered(name="'G00G"',
current=Decimal('142.45"),
high=Decimal('151.85"),
low=Decimal('84.95')),

StockOrdered(name="'G00G",
current=Decimal('166.57"),
high=Decimal('193.31"),
low=Decimal('129.40"'))]

When the dataclass decorator receives the order=True argument, it will, by default, compare the
values based on each of the attributes in the order they were defined. In this case, it first compares
the name attribute values of the two objects. If those are the same, it compares the current attribute
values. If those are also the same, it will move on to high and will even include low if all the other
attributes are equal. The rules follow the definition of a tuple: the order of definition is the order of

comparison.

Another interesting feature of dataclasses is frozen=True. This creates a class that’s similar to
typing.NamedTuple. There are some differences in what we get as features. We’d need to use
@dataclass(frozen=True, ordered=True) to create structures such as NamedTuple. This leads to
a question of “Which is better, a named tuple of a frozen dataclass?” This doesn’t have an answer —
mostly because better is undefined. We haven’t explored all of the optional features of dataclasses,
such as initialization-only fields and the __post_init__() method. Some applications don’t need

all of these features, and a simple NamedTuple may be adequate for a specific application.

There are a few other approaches for creating rich class definitions with less code. Outside the

standard library, packages such as attrs, pydantic, and marshmallow provide attribute definition

216 Python Data Structures

capabilities that are — in many ways — similar to dataclasses. See https://jackmckew.dev/datacl
asses-vs-attrs-vs-pydantic.html for a comparison. There’s a small example of using pydantic

in Chapter 7.

We’ve looked at two ways to create unique classes with specific attribute values, named tuples and
dataclasses. It’s often easier to start with dataclasses and add specialized methods. This can save
us a bit of programming because some of the basics, such as initialization, comparison, and string

representations, are handled elegantly for us.

It’s time to look at Python’s built-in generic collections, dict, 1ist, and set. We’ll start by exploring

dictionaries.

Dictionaries and typed dictionaries

Dictionaries are central to object definition. Each object we create has a dictionary buried inside it

to hold the attribute values. We can, of course, be more explicit about using dictionaries.

If you don’t know how to create or work with dictionaries, we direct you to the official Python
tutorial. See section 5.5 (https://docs.python.org/3/tutorial/datastructures.html#dicti
onaries). Also, see the Modern Python Cookbook, Chapter 5, for several recipes that show how

dictionaries work.
Dictionaries are extremely versatile. There are two major ways to think about dictionaries:

« We can have dictionaries where all the values are different instances of objects with the same
type. We might have a dict[str, Stock] dictionary to map a stock name to details of the

price history.

« Another very common use case is to each key represent some an attribute of a single object.
In this case, the keys are defined by the application’s needs and the values often have distinct
types. We may, for example, represent a stock described by a dictionary like this: ‘name” :
"GOOG’, ’'current’: 1245.21, ’'range’: (1252.64, 1245.18). This case clearly overlaps
with named tuples, dataclasses, and objects in general. Indeed, there’s a special type hint for
this kind of dictionary, called TypedDict, that looks like a NamedTuple type hint. We’ll look

at this in the Typed dictionaries section, later.

In our stock application, we would most often want to look up prices by the stock symbol. We can
create a dictionary that uses stock symbols as keys, and tuples (you could also use named tuples or

dataclasses as values, of course) of current, high, and low as values, like this:

https://jackmckew.dev/dataclasses-vs-attrs-vs-pydantic.html
https://jackmckew.dev/dataclasses-vs-attrs-vs-pydantic.html
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

Chapter 8 217

>>> stocks = {
"GOOG": Stock("GOOG", Decimal('166.57'), high=Decimal('193.31"),
low=Decimal('129.40')),

"MSFT": Stock("MSFT", Decimal('11@.41'), high=Decimal('110.45"'),
low=Decimal('109.84')),
}

We’ve mapped the stock symbols to instances of a Stock class, defined previously. An interesting

design question is the response when a key is missing. We have two choices:
« Raise a KeyError exception. Using stocks[“RIMM"], for example, will raise an exception.
« Return some kind of default value. This, further, has two additional choices:

— Add the new default value to the dictionary for future use. When we use
x = stocks.setdefault(“RIMM”, None), we'll either get the existing value associated
with the key “RIMM” or we’ll update the dictionary to insert a None object as the value

for the key “RIMM” and return the None object.

— Leave the dictionary untouched. When we use x = stocks.get(“RIMM”, None), the

dictionary will not be updated.
The default value situation is interesting when we’re using a dictionary to collect values.

Let’s say we have some DailyQuote class definition. This class has a number of attributes with

dates and stock prices. It looks like this:

import datetime
from decimal import Decimal
from typing import NamedTuple

class DailyQuote(NamedTuple):
symbol: str
date: datetime.date
price: Decimal

We might have a process to partition a big sequence of DailyQuote into smaller lists, one for each

symbol. The processing looks like this:

218 Python Data Structures

>>> summary: dict[str, list[DailyQuote]] = {}
>>> for dq in some_source_of_daily_quotes:

summary.setdefault(dqg.symbol, list())
summaxry[dqg.symbol] .append(dq)

The idea here is that a stock symbol that has not previously been seen needs to be added to the
dictionary with an empty list object as the value. After that, the symbol is known, and an object
can be appended to the list. At the end of this process, we’d have a dictionary that maps a stock

symbol to a sequence of daily quote instances related to the given symbol.
This is used so frequently that there’s a separate defaultdict class in the collections module
that implements this for us. Using this class changes the example to the following:

>>> from collections import defaultdict

>>> summary: defaultdict[str, list[DailyQuote]] = defaultdict(list)
>>> for dgq in some_source_of_daily_quotes:
summary[dqg.symbol] .append(dq)

There is an even more specialized variant on a dictionary with a default value. The Counter class is
— in effect — defaultdict(int). It has a number of additional methods for working with frequency
data. Plus it has a very clever __init__() method. This class is ideal for gathering frequency

information.

For example, we can count the frequency of each symbol in a collection of data with the following:

>>> from collections import Counter

>>> frequency = Counter()
>>> for dgq in some_source_of_daily_quotes:
frequency[dqg.symbol] += 1

We can use a generator expression to extract the symbol attribute from each of the DailyQuote

objects. That changes the frequency counts to the following pair of statements:

>>> symbols = (dqg.symbol for dq in some_source_of_daily_quotes)

>>> frequency = Counter(symbols)

Chapter 8 219

This example relies on two things that are features of a Counter. First, the initialization scans the
given iterable sequence of objects and uses self[k] += 1 for each key value, k, in the given iterable.
Second, and more important, when a Counter has a missing key, the default value that’s returned is

Z€ro.

The various approaches to handling missing values and default values mean there are a lot different
ways to use dictionaries. The base dict class, which raises an exception, the defaultdict extension,
evaluates a function to compute a default, and the Counter supplies zero. The core of these options
for working with missing values is defined by a special method named __missing__ (). This method
must either raise an exception or return a value. It can also update the dictionary, or — perhaps —

write a warning to a log file before supplying a default value.

To extend a dictionary, we can use code such as the following:

class StockQuoteSummary(dict[str, list[DailyQuote]]):
def __missing__(self, symbol: str) -> list[DailyQuote]:
self[symbol] = list()
return self[symbol]
def by_date(self, symbol: str) -> list[DailyQuote]:
return sorted(self[symbol], key=lambda dq: dq.date)

Now, we can accumulate and process a history of DailyQuote objects with code such as the

following:

>>> summary = StockQuoteSummary ()
>>> for dq in some_source_of_daily_quotes:
summary [dq.symbol] .append(dq)

>>> for symbol in summary:
print(summary.by_date(symbol))

The output shows lists of quotes, properly sorted into ascending order by date.

This shows how we can use dictionary-like features to define our own classes. We can combine

data and behavior into a tidy package.

In Modern Python Cookbook, Chapter 8 provides recipes that show how a number of the classes in

the collections module work.

220 Python Data Structures

Previously, we noted that dictionary values can be homogeneous — they all have the same type.
We might also want dictionaries to be heterogeneous, with the values having potentially distinct

types. We can formalize these more sophisticated dictionaries with a TypedDict definition.

Typed dictionaries

We’ve used tuples, named tuples, and dataclasses to describe a collection of values related to a stock

price. We can also use a dictionary for this.

Here are two versions of a dictionary with a variety of values:

'symbol': 'GOOG',
"current': 1245.21,
'range': (1252.64, 1245.18)

= dict(

symbol="'G00G",
current=1245.21,
range=(1252.64, 1245.18)

If you’re familiar with JSON documents, this kind of dictionary with a mixed bag of distinct values

should look familiar. (For more information, see https://www.json.org.)

Looking back at the way named tuple and dataclass instances are created, this second form, using
the dict() function, should feel familiar. This is, of course, by design. We want to be able to change

data structures without rewriting every bit of syntax in our Python programs.

If we have dictionary keys that are not valid Python names, for example, a string “current$”

requires using the {} form for a dictionary literal. This won’t be permitted in the dict() form.

We can formalize this stock quote dictionary using the typing.TypedDict class. The definition

looks a lot like a typing.NamedTuple class:

from decimal import Decimal
from typing import TypedDict

class Range(TypedDict):

https://www.json.org

Chapter 8 221

low: Decimal
high: Decimal

class Stock(TypedDict):
symbol: str
current: Decimal
range: Range

(When you look back at section Named tuples via typing.Named tuple, you’ll see how the design has
evolved a bit from the first approach with a flat list of fields.)

We can create these objects as follows:

>>> s_td = Stock(
symbol="'G00G",

current=Decimal('166.57"),
range=Range (low=Decimal('129.40'), high=Decimal('193.31"))

As with most type hints, the types are checked by tools. At runtime, only the keys are checked to

make sure the required names are present.

While these look like class definitions, there are some limitations. The most notable is that we can’t
easily add methods as part of the class definition. If we need to add methods above and beyond
what a dictionary offers, it’s likely we have an object that might be a dataclass or a class we build

ourselves.

What is most interesting about dictionaries in general is the way we can handle optional and
required attributes. With a dataclass or a named tuple, we can define an optional attribute as having
a value that with a type of str | None = None. The attribute will be present, but it may have a

value of None.
With a typed dictionary, the attribute may not be present at all. This gives us a spectrum of
possibilities:

« Attribute is present and has a value of some type

« Attribute is present and has a value of None

« Attribute is not present This leads to further design choices.

— Use __missing__() to provide a default or update the object (or both)

222 Python Data Structures

— Raise an exception because the attribute is missing

— Suggest the collaborating object use the get() or setdefault() methods to handle

the missing attribute

This is a wide variety of alternatives. The question of “missing” data or a “not-applicable” attribute
is a profound one. Each application will have unique requirements for dealing with data that doesn’t
apply, can’t be found, or can’t be trusted, or is known to be erroneous. For text-book examples,
there’s an implication that all data is required and is correct. For real-world applications, this

simplistic assumption may be invalid.

To help clarify the rules, there are a few additional type hints we can use with typed dictionary

declarations.

The first is a metaclass attribute we can provide when we define the class. The default behavior for
a typed dictionary is to require all of the named attributes. We can use (TypedDict, total=False)

as the base class to make the attributes optional.
We can further fine-tune a non-total typed dictionary with these generic type annotations:

« name: Required[type]. This attribute must be present or the dictionary cannot be created.
An exception will be raised if it’s omitted. This only makes sense when total=False is used

to define the typed dictionary as a whole.

« name: NotRequired[type]. This attribute is optional. This is redundant when total=True
(which is the default behavior).

We might use something like the following to define typed dictionary with optional attributes:

from decimal import Decimal
import datetime
from typing import TypedDict, NotRequired

class StockN(TypedDict):
symbol: str
name: NotRequired[str]
current: Decimal
range: Range
date: NotRequired[datetime.date]

This definition introduces two optional attributes. If a value is provided, it’s expected to be of the

proper type. We could — either through malice or as a bug — try to create a value of the StockN

Chapter 8 223

class with an invalid attribute value:

>>> s = StockN(symbol="RIMM", name=None, current=Decimal('123.45"),
range=Range(low=Decimal('1.00'), high=Decimal('200.00')))
>>> g

{'symbol': 'RIMM', 'name': None, 'current': Decimal('123.45'), 'range':
{'"low': Decimal('1.00'), 'high': Decimal('200.00')}}

This isn’t an error (yet). Somewhere else in the application, finding None where a string belongs
may lead to an exception being raised. A tool such as mypy or pyright will spot this kind of

problem and raise the expected errors.

Dictionary design choices

Given dictionaries, typed dictionaries, and dataclasses, how do we decide how to represent attribute

values of an object? We can rank the techniques like this:

1. For alot of cases, dataclasses offer a number of helpful features with less code writing. They

can be immutable, or mutable, giving us a wide range of options.

2. For cases where the data is immutable, a NamedTuple can be slightly more efficient than a
frozen dataclass by about 5% — not much. What tips the balance here is an expensive attribute
computation. While a NamedTuple can have properties, if the computation is very costly and
the results are used frequently, it can help to compute it in advance, something a NamedTuple
isn’t good at. Check out the documentation for dataclasses and their __post_init__ ()
method as a better choice in the rare case where it’s helpful to compute an attribute value in

advance.

3. Dictionaries are ideal when the complete set of keys isn’t known in advance. When we’re
starting a design, we may have throwaway prototypes or proofs of concept using dictionaries.
When we try to write unit tests and type hints, we often need to ramp up the formality and

use a typed dictionary.

Because of the similar syntax, it’s relatively easy to try different designs to see which works better
for the problem. We can decide which criteria we’re using for “better”: faster, easier to test, uses
less memory, easier to understand, and so on. Sometimes, all three converge and there’s one best

choice. More often, it’s a trade-off.

224 Python Data Structures

In Chapter 12, we’ll return to this performance question by looking at other data structure alterna-

tives.

We'll include a side-bar on dictionary keys, hash codes, and equality before we move on to lists and

sets.

Dictionary keys

To be usable as a dictionary key, an object must be hashable, that is, have a __hash__() method to
convert the object’s state into a unique integer value for rapid lookup in a dictionary or set. The
built-in hash() function uses the __hash__() method of the object’s class. For example, strings map
to integers based on numeric codes for the characters in the string, while tuples combine hashes of

the items inside the tuple. The reason for this is an important part of the way Python works.

o Any two objects that are considered equal (such as strings with the same characters

-/@\- or tuples with the same values) must also have the same hash value.

7

Note the asymmetry between equality and matching hash values. If two strings have the same
hash value, they could still turn out to be unequal. Think of hash equality as an approximation for
an equality test: if the hashes aren’t equal, don’t bother looking at the details. If the hashes are
equal, invest the time in checking each attribute value or each item of the tuple, or each individual

character of the string.

Here’s an example of two integers with the same hash value that are not actually equal:

>>> x = 2020
>>> y = 2305843009213695971
>>> hash(x) == hash(y)

True
>>> x ==y

False

(The magic number? Mg, = 28! —1.)

When we use these values as keys in a dictionary, a hash collision algorithm will keep them
separated. The situation leads to a microscopic slowdown in these rare cases of hash collisions.

This is why dictionary lookup isn’t always immediate: a hash collision might slow down access.

The built-in mutable objects — including lists, dictionaries, and sets — cannot be used as dictionary

Chapter 8 225

keys because they don’t provide hash values. We can, however, create our own class of objects that
are both mutable and provide a hash value; this is unsafe because a change to the object’s state can

make it difficult to find the key in the dictionary.

It is certainly possible to create a class with a mixture of mutable and immutable attributes and
confine a customized hash computation to the immutable attributes. Because of the differences in
behavior between the mutable and immutable features, this seems like it’s really two objects that
collaborate, not a single object with mutable and immutable features. If we refactor the two aspects
into separate classes, we can use the immutable part for dictionary keys and keep the mutable part

in the dictionary value.

In contrast, there are no limits on the types of objects that can be used as dictionary values. We can
use a string key that maps to a list value, for example, or we can have a nested dictionary as a value

in another dictionary.

Speaking of lists, it’s time to dig a little more deeply into Python’s 1ist collection.

Lists

Python’s generic list structure is integrated into a number of language features. We can, for example,
visit all the items in a list without explicitly requesting an iterator object, and we can construct a list
(as with a dictionary) with very simple-looking comprehension syntax. Further, list comprehensions

and generator expressions turn lists into a veritable Swiss Army knife of computing functionality.

If you don’t know how to create or append to a list, how to retrieve items from a list, or what slice
notation is, we direct you to the official Python tutorial. See section 3.1.3 (https://docs.python.
org/3/tutorial/introduction.html#lists) and section 5.1 (https://docs.python.org/3/tu
torial/datastructures.html#more-on-1lists) of the Python Tutorial. Also, the Modern Python

Cookbook, Chapter 4, has several recipes related to lists.

In Python, lists should normally be used when we want to store several instances of the same type
of object: lists of strings or lists of numbers. We’ll often use a type hint, 1ist[T], to specify some

type, T, of object kept in the list, for example, list[int] or 1ist[stx].

A list of distinct types requires some care. If it’s a few distinct types, then it might be described by

a hint such as 1ist[X | Y], where X and Y are two type names.

Lists are ordered. Often, this is the order in which they were inserted. But they can also be sorted

into other orders. We’ll look at list sorting in section Sorting lists.

https://docs.python.org/3/tutorial/introduction.html#lists
https://docs.python.org/3/tutorial/introduction.html#lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

226 Python Data Structures

Lists are mutable, so items can be added, replaced, and removed from the list. This can be handy for

reflecting the state of some more complex objects.

Like dictionaries, Python lists use an extremely efficient and well-tuned internal data structure so
we can worry about what we’re storing, rather than how we’re storing it. The Python standard
library expands on lists to provide some specialized data structures for queues and stacks. Python
doesn’t make a distinction between lists based on arrays and lists that use links. Generally, the

built-in list data structure can serve a wide variety of purposes.

Don’t use lists for collecting different attributes of individual items. Tuples, named tuples, dictio-
naries, and objects would all be more suitable for collecting different kinds of attribute values. Our
first Stock data examples at the beginning of the chapter stored the current price, minimum price,
and maximum price, each a different attribute with a distinct meaning in a single sequence. This

wasn’t a good idea, and named tuples, dataclasses, and typed dictionaries were clearly superior.

Here’s a rather convoluted counterexample that demonstrates how we could perform a data fre-
quency count using a list. It is much more complicated than the equivalent using Counter. It
illustrates the effect that choosing the right (or wrong) data structure can have on the readability

(and performance) of our code. This is demonstrated as follows:
import string

CHARACTERS = list(string.ascii_letters) + [" "]

def letter_frequency(sentence: str) -> list[tuple[str, int]]:
frequencies = [(c, @) for c in CHARACTERS]
for letter in sentence:
index = CHARACTERS.index(letter)
frequencies[index] = (letter, frequencies[index][1] + 1)
non_zero = [(letter, count) for letter, count in frequencies if count >
0]
return non_zero

This code starts with a list of possible characters. The string.ascii_letters attribute provides
a string of all the letters, lowercase and uppercase, in order. We convert the string to a list and
concatenate a one-character list with a space. The value of CHARACTERS is the entire domain of

available characters for the frequency list.

The first line inside the function uses a list comprehension to turn the CHARACTERS list into a list of

Chapter 8 227

tuples, assigned to frequencies. Then, we iterate over each of the characters in the sentence. We
find the index of a character in the CHARACTERS list. We use that index the tuple in the frequencies
list by creating a new tuple. This is rather difficult to read! It performs poorly and it does a bunch

of pointless memory management, creating and deleting tuple objects.

Finally, we filter the list by examining each tuple and keeping only pairs where the count is greater

than zero. This removes the letters we allocated space for but never saw.

Besides being longer than dictionary-based examples, the CHARACTERS . index (letter) operation
can be very slow. The worst case is to examine each of the characters in the list for a match. On
average, it will search half the list. Compare this with a dictionary that does a hash computation
and examines one item for a match (except in the case of a hash collision where there’s a tiny

probability of examining more than one).

The type hint describes the type of the objects in the list. We summarized it as list[tuple[str,
int]1]. Each of the items in the resulting list will be a two-tuple. This lets tools such as mypy
confirm that the operations in the code respect the structure of the list overall and each tuple within

the list.

Like dictionaries, lists are objects, too. For an overview of the methods available, see section 5.1
(https://docs.python.org/3/tutorial/datastructures.html#more-on-1ists) of the Python

Tutorial.

For the complete list of methods, see the Sequence Types (https://docs.python.org/3/1librar
y/stdtypes.html#sequence-types-1ist-tuple-range) section of the Python Standard Library
documentation. The documentation can be found here: https://docs.python.org/3/1library/in

dex.html.

Sorting lists

Without any parameters, the sort() method of a 1ist object will generally do as expected. If
we have a list[str] object, the sort() method will place the items in alphabetical order. This
operation is case-sensitive, so all capital letters will be sorted before lowercase letters; that is, Z
comes before a. If it’s a list of numbers, they will be sorted in numerical order. If a list of tuples is
provided, the list is sorted by considering the elements in the tuple in order. If a mixture containing

unsortable items is supplied, the sort will raise a TypeError exception.

If we want to place objects of classes we’ve defined ourselves into a list and make those objects

sortable, we have to do a bit more work. The special __1t__ () method (which stands for less than)

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

228 Python Data Structures

must be defined on the class to make instances of that class comparable. The sort () method on
the list will access this method on each object to determine where it goes in the list. This method
should return True if an instance of a class is somehow less than the passed argument value, and

False otherwise.

Often, when we need comparisons like this, we’ll define a dataclass. As discussed in section
Dataclasses, the @dataclass (order=True) decorator will ensure that all of the comparison methods

are built for us. A named tuple also has the ordering operations defined by default.

One tricky situation that arises with sorting is handling a data structure sometimes called a tagged
union. A union is a description of an class of objects where one or more attributes are not always
relevant. If an attribute’s relevance depends on another attribute’s value, this can be seen as a union

of distinct subtypes with a tag to distinguish between the two types.

Here’s some example data, where a tag value, the Data Source column, is required to decide how
to interpret the remaining columns. Some values of Data Source tell us to use the timestamp,

whereas other values tell us to use the creation date.

Data Source Timestamp | Creation Date Name, Owner, etc.
Local 1607280522.68012 “Some File”, etc.
Remote “2020-12-06T13:47:52.849153” | “Another File”, etc.
Local 1579373292.452993 “This File”, etc.
Remote “2020-01-18T13:48:12.452993” | “That File”, etc.

Table 8.1: Sample Data

How can we sort these into a single, coherent order? We’d like to have a single, consistent data

type in our list, but the source data has two distinct subtypes.

A simple-seeming if row.data_source == “Local”: can work to distinguish values, but it can be
confusing logic for tools such as mypy to work with. One or two ad hoc if statements aren’t too

bad, but the design principle of throwing if statements at the problem isn’t very scalable.

In this example, we can consider Timestamp as the preferred representation. This means we only
need to compute timestamps from the creation date string for the items where the data source is
“Remote.” In this example, either the float value or the string would sort into an order properly.
This happens to work out well because the string is in the carefully designed ISO format. If it were

in American month-day-year format, it would require conversion to a timestamp to be useful.

Converting all of the various input formats to Python’s native datetime.datetime objects is another

Chapter 8 229

choice. This has the advantage of being distinct from any of the input formats. While this is a little
more work, it gives us more flexibility because we’re not tied to a source data format — a format
that may change in the future. The concept is to make every variant input format convert to a

single, common datetime.datetime instance.

What’s central is treating the two subtypes as if they’re a single class of objects. This doesn’t always
work out well. Often, this is a design constraint that sneaks up on us when we have additional

customers or additional sources of data.

We'll start an implementation with a single type that supports both subtypes of data. This is not
ideal, but it matches the source data and is often how we start tackling this kind of data. Here’s the

essential class definition:

from typing import cast, Any
from dataclasses impoxrt dataclass
import datetime

from datetime impoxrt timezone

@dataclass(frozen=True)

class MultiItem:
data_source: str
timestamp: float | None
creation_date: str | None
name: str
owner_etc: str

def __1t_ (self, other: Any) -> bool:
if self.data_source == "Local":
self_datetime = datetime.datetime.fromtimestamp(
cast(float, self.timestamp), tz=timezone.utc
)
else:
self_datetime = datetime.datetime.fromisoformat (
cast(str, self.creation_date)
) .replace(tzinfo=timezone.utc)
if other.data_source == "Local":
other_datetime = datetime.datetime.fromtimestamp(
cast(float, other.timestamp), tz=timezone.utc
)
else:
other_datetime = datetime.datetime.fromisoformat (

230 Python Data Structures

cast(str, other.creation_date)
) .replace(tzinfo=timezone.utc)
return self_datetime < other_datetime

The __1t__() method compares an object of the MultiItem class to another instance of the same
class. Because there are two implicit subclasses, we have to check the tag attributes, self.data_source
and other.data_source, to see which of the various combinations of fields we’re dealing with.
We’ll do a conversion from a timestamp or a string into a common representation. Then, we can

compare the two common representations.

The conversion processing is nearly duplicate code. Later in this section, we will look at refactoring
this to remove the redundancy. The cast() operations are required to make it clear to mypy that
the item will not be None. While we know the rules that match the tag (the Data Source column)
and the two kinds of values, those rules need to be stated in a way so that mypy can exploit them.

The cast() operation does nothing; it exists to tell mypy what the data will be at runtime.

o The cast() operation is a claim about the intent and the design, with no runtime

,@ impact. No conversion happens, nor does it do any runtime type-checking.

7

The following output illustrates this class in action when it comes to sorting:

>>> mi_@ = Multiltem("Local", 1607262522.000000, None, "Some File", "etc.
0")

>>> mi_1 MultiItem("Remote", None, "2020-12-06T13:47:52.000001", "Another
File", "etc. 1")

>>> mi_2 = MultiItem("Local", 1579355292.000002, None, "This File", "etc.
2")

>>> mi_3 = MultiItem("Remote", None, "2020-01-18T13:48:12.000003", "That
File", "etc. 3")

>>> file_list = [mi_@, mi_1, mi_2, mi_3]

>>> file_list.sort()

>>> from pprint import pprint

>>> pprint(file_list)

[MultiItem(data_source='Local',
timestamp=1579355292.000002,
creation_date=None,

Chapter 8 231

name='This File',

owner_etc='etc. 2'),
MultiItem(data_source='Remote',

timestamp=None,

creation_date='2020-01-18T13:48:12.000003"',

name='That File',

owner_etc='etc. 3'),
MultiItem(data_source='Remote',

timestamp=None,

creation_date='2020-12-06T13:47:52.000001"',

name="'Another File',

owner_etc='etc. 1'),
MultiItem(data_source='Local',

timestamp=1607262522.0,

creation_date=None,

name="'Some File',
owner_etc='etc. 0')]

The comparison rules were applied among the various subtypes that were conflated into a single
class definition. If the rules are more complex, however, this use of if statements can become

unwieldy.

Only the __1t__ () method is required to enable sorting. To be complete, it may be helpful for the
class to implement the similar __gt__(), _eq_ (), _ne_ (), _ge_ (), and __le_ () methods.

This ensures that all of the <, >, ==, I=, >=, and <= operators also work properly.

One approach is by implementing __1t__() and __eq__(), and then applying the @total_ordering

class decorator to supply the rest:

from functools import total_ordering

@total_ordering

@dataclass(frozen=True)

class MultiItemTO:
data_source: str
timestamp: float | None
creation_date: str | None
name: str
owner_etc: str

232 Python Data Structures

@property
def datetime(self) -> datetime.datetime:
if self.data_source == "Local":

return datetime.datetime.fromtimestamp(
cast(float, self.timestamp), tz=timezone.utc

)
else:

return datetime.datetime.fromisoformat (
cast(str, self.creation_date)
) .xeplace(tzinfo=timezone.utc)

def __eq__(self, other: object) -> bool:
return self.datetime == cast(MultiItemTO, other).datetime

def __1t_ (self, other: object) -> bool:
return self.datetime < cast(MultiItemTO, other).datetime

When we provide some combination of < (or >) and =, the @total_order decorator can deduce the
remaining logic operator implementations. For example, a > b = ~a < b. The implementation of

__ge__(self, other) isnot self < other.

This also suggests a new design principle. When confronted with two subtypes — in this case,
local times with one format and remote times with a distinct format — it helps to convert to
some unifying representation. We’ve added the datetime property to compute a single, standard

datetime.datetime object as needed.

Rather than add sophisticated sortability features to the class, we can extract a sortable attribute
value when we need it. This will encapsulate the comparisons to those few places where the
datetime attribute is actually needed. We can use this to provide a “key extraction” function to
the sort() method. This argument to sort() is a function that translates each original object in
a simpler object that supports comparison. In our case, we’d like a function to extract either the

timestamp or the creation_date for comparison.

It turns out that we only need to define the datetime property. This is a subset of the MultiItemTO
definition shown previously. It doesn’t need the @total_order decorator, or the __1t_ () or

__eq__() methods.

Here’s how we use a class with only the datetime attribute to compare objects:

Chapter 8 233

>>> from operator import attrgetter

>>> file_list.sort(key=attrgetter('datetime'))

We’ve used the attrgetter operator to get a named attribute value and use this for comparison
when sorting. When working with tuples or dictionaries, itemgetter() can be used to extract a
specific item by key or position. There’s even methodcaller (), which returns the result of a method

call on the object being sorted. Refer to the operator module documentation for more information.

This segregates the sorting interface from other aspects of the class, leading to a pleasant simplifi-
cation. We can leverage this kind of design to provide other kinds of sorts. We might, for example,

sort by name only. This is slightly simpler because no conversion method is required:

>>> file_list.sort(key=lambda item: item.name)

We’ve created a lambda object, a tiny no-name function that takes an item as an argument and
returns the value ofitem.name. A lambda is a function, but it doesn’t have a name, and it can’t have
any statements. It only has a single expression. If you need statements (for example, a try-except

clause), you need a conventional function definition instead of a lambda.

There’s rarely one single sort order for data objects. Providing the key function as part of the sort()

method lets us define a wide variety of sorting rules without creating complex class definitions.

After looking at dictionaries and now lists, we can turn our attention to sets.

Sets

Lists are extremely versatile tools that suit many container object applications. But they are not
useful when we want to ensure that objects in a collection are unique. For example, a song library
may contain many songs by the same artist. If we want to sort through the library and create a list
of all the artists, we would have to constantly check the list to see whether we’ve added the artist

already, to avoid adding them again.

This is where sets come in. Sets come from mathematics, where they represent an unordered group
of unique items. We can try to add an item to a set five times, but “is a member of a set” doesn’t

change after the first time we add it.

For more information on sets, see section 5.5 (https://docs.python.org/3/tutorial/datastr

uctures.html#sets) of the Python Tutorial. Also, the Modern Python Cookbook, Chapter 4, has

https://docs.python.org/3/tutorial/datastructures.html#sets
https://docs.python.org/3/tutorial/datastructures.html#sets

234 Python Data Structures

several recipes related to sets.

In Python, sets can hold any hashable object, not just strings or numbers. Hashable objects imple-
ment the __hash__() method. These are the same objects that can be used as keys in dictionaries;
so again, mutable lists, sets, and dictionaries are out. Like mathematical sets, an object is or is not a

member of a given set; it can’t be a member multiple times.

If we’re trying to create a collection of song artists, we can add the names to the set. This example

starts with a list of (song, artist) tuples and creates a set of the artists:

>>> song_library = [
("Phantom Of The Opera", "Sarah Brightman"),
("Knocking On Heaven's Door", "Guns N' Roses"),
("Captain Nemo", "Sarah Brightman"),
("Patterns In The Ivy", "Opeth"),
("November Rain", "Guns N' Roses"),
(
(

"Beautiful", "Sarah Brightman"),
"Mal's Song", "Vixy and Tony"),
1
>>> artists = set()
>>> for song, artist in song_library:
artists.add(artist)

There is no built-in syntax for an empty set as there is for empty lists and empty dictionaries;
we create a set using the set() constructor. However, we can use the curly braces (borrowed
from dictionary syntax) to create a set, so long as the set contains simple values. If we use colons,
it’s a dictionary literal. If we just separate values with commas, it’s a set, for example ‘value’,

‘value2’.

Items can be added individually to the set using the add() method, and a set can be updated in bulk
using the update () method. If we run the script shown previously, we see that the set works as

advertised:

>>> grtists

{'Opeth', "Guns N' Roses", 'Vixy and Tony', 'Sarah Brightman'}

If you’re paying attention to the output, you’ll notice that the items are not printed in the order
they were added to the set. Indeed, each time you run this, you may see the items in a different

order, depending on the hash randomization key in use.

Chapter 8 235

As with lists and dictionaries, there’s a set comprehension that builds a set from a source object. It
looks like this:

>>> artists = set(artist for

artist in song_library)

—

The album name is assigned to the _ variable and ignored. The artist name is used to build a set.

Sets are inherently unordered due to a hash-based data structure used for efficient access to the
members. Because of this lack of ordering, sets cannot have items looked up by index. The primary
purpose of a set is to divide the world into two groups: objects in the set, and objects not in the set. It
is easy to check whether an object is in a set or to iterate over the items in a set. Concepts such
as sorting don’t apply: we have to convert the set to a list. This output shows all three of these

activities:

>>> "QOpeth" in artists

True

>>> alphabetical = list(artists)

>>> alphabetical.soxrt()

>>> alphabetical

["Guns N' Roses", 'Opeth', 'Sarah Brightman', 'Vixy and Tony']

>>> for artist in artists:
print(f"{artist} plays good music")

Opeth plays good music

Guns N' Roses plays good music
Vixy and Tony plays good music
Sarah Brightman plays good music

Each time you run this final example, you may see the items in a different order.

The primary feature of a set is uniqueness. Because an item can only appear once, sets are often

used to deduplicate data. We’ll touch an a few of the many features of sets.

The union() method is the most common and easiest to understand. It takes a second set as a
parameter and returns a new set that contains all elements that are in either of the two sets; if an
element is in both original sets, it will only show up once in the new set. Union is like a logical or
operation. Indeed, the | operator can be used on two sets to perform the union operation, if you

don’t like calling methods.

236 Python Data Structures

Conversely, the intersection() method accepts a second set and returns a new set that contains
only those elements that are in both sets. It is like a logical and operation, and can also be referenced

using the & operator.

The symmetric_difference() method tells us what’s distinct; it is the set of objects that are in one
set or the other, but not in both. It uses the ~ operator. The following example illustrates these

methods by comparing some artists preferred by two different people:

>>> dusty_artists = {
"Sarah Brightman",
"Guns N' Roses",
"Opeth",

"Vixy and Tony",
}

>>> steve_artists = {"Yes", "Guns N' Roses", "Genesis"}

Here are three examples of union, intersection, and symmetric difference:

>>> 31l = dusty_artists | steve_artists

>>> gll

{'Genesis', 'Vixy and Tony', 'Sarah Brightman', 'Opeth', "Guns N' Roses",
'Yes'}

>>> poth = dusty_artists.intersection(steve_artists)
>>> both
{"Guns N' Roses"}

>>> not_both = dusty_artists A steve_artists
>>> not_both
{'Genesis', 'Sarah Brightman', 'Opeth', 'Vixy and Tony', 'Yes'}

There is an intersection operator, & but we used the intersection() method in the preceding

example. Some people like the operator notation. Some people like the method notation.

The order for the set elements isn’t fixed. You may see the results in a different order. If you want
to see the same results as we get when unit testing the code for the book, you need to set the
PYTHONHASHSEED environment variable to “42”. This will replace the usual hash randomization with

a value that provides consistent results.

It is valuable to know that sets are much more efficient than lists when checking for membership

using the in keyword. If you use the value in container syntax on a set or a list, it will return

Chapter 8 237

True if one of the elements in container is equal to value. However, when searching a list, it will
look at every object in the container until it finds the value. The bigger the list, the longer this
search takes. When searching a set, on the other hand, it computes a hash the value and checks for
membership. The time is (almost) constant. (The slight variability comes from the tiny possibility

of hash collisions.)

Three types of queues

We'll look at an application of the list structure to create a queue. A queue is a special kind of buffer,
summarized as First In First Out (FIFO). The idea is to act as a temporary stash so one part of an

application can write to the queue while another part consumes items from the queue.

A database might have a queue of data to be written to disk. When our application performs an
update, the local cache version of the data is updated so all other applications can see the change.
The write to the disk, however, may be placed in a queue for a writer to deal with a few milliseconds

later.

When we’re looking at files and directories, a queue can be a handy place to stash details of the
directories to be processed later. We’ll often represent a directory as the path from the root of the
filesystem to the file of interest. The algorithm works like this:
q< o
q < q + starting directory
while ¢ = @ do
d < next(q)
if d is a file then
process(d)
else if d is a directory then
q < q + contents(d)
end if

end while

We can visualize this list-like structure as growing via the append() method and shrinking via
pop(@). The append() method puts items at the end. The pop (@) method takes the next item from
the front of the queue.

238 Python Data Structures

Figure 8.1 shows the operations on a queue:

Queue
fourth_path
third_path
second_path

ﬁrst_paty

next

Figure 8.1: Queue concept

o N|w

The idea is for the queue to grow and shrink: each directory grows the queue and each file shrinks

the queue. Eventually, all the files and directories have been processed and the queue is empty.
We have several ways to implement a queue in Python:
1. Use a list with the the pop() and append() methods.

2. Use the collections.deque class, which supports popleft() and append() methods. A
“deque” is a double-ended queue. This is an elegant queue implementation that’s faster than

a simple list for the specific operations of appending and popping.

3. Use the queue module. This queue class is often used for multithreading, but it can also be
used for our single thread application to examine a directory tree. This uses methods named
get() and put(). Since this structure is designed for concurrency, it locks the data structure
to assure that each change is atomic and can’t be interrupted by other threads. This is the

subject of Chapter 14.

The heapq module also provides a queue, but it does some extra processing. It keeps items in priority

order, not the order they were put into the queue, breaking the FIFO expectation.

Each of these implementations is slightly different. This suggests we might want to create handy
wrapper classes around them to provide a uniform interface. We can create class definitions like

the following:

Chapter 8 239

from pathlib import Path

class ListQueue(list[Path]):

def put(self, item: Path) -> None:
self.append(item)

def get(self) -> Path:
return self.pop(0)

def empty(self) -> bool:
return len(self) ==

This shows the three essential operations for a queue. We can put something into the queue,
appending it to the end. We can get something from the queue, removing the item at the head of
the queue. Finally, we can ask whether the queue is empty. We’ve layered this on a 1ist class by

extending it to add three new methods: put(), get(), and empty().

Next is a slightly different implementation. This uses the collections.deque class:

from pathlib import Path
from typing import Deque

class DeQueue(Deque[Path]):

def put(self, item: Path) -> None:
self.append(item)

def get(self) -> Path:
return self.popleft()

def empty(self) -> bool:
return len(self) ==

It’s hard to see the distinction between this implementation and the generic list implementation.
It turns out the popleft() method is a higher-speed version of pop(@) in a conventional list.

Otherwise, this looks very similar to the list-based implementation.

240 Python Data Structures

Here’s a final version that uses the queue module. This queue module’s implementation uses locks
to prevent the data structure from being damaged by concurrent access across multiple threads. It’s

generally opaque to us, except as a tiny performance cost:

from pathlib import Path
import queue

class ThreadQueue(queue.Queue[Path]):

pass

This implementation works because we decided to use the Queue class interface as the template for
the other two classes. This meant we didn’t have to do any real work to implement this class; this

design was the overall target for the other class designs.

The type hint is similar to the others. The Queue class definition is a generic type, and this code
provides a type parameter to specify that the queue will always contain Path objects. It does nothing

unique; it merely provides a type-specific wrapper for code that’s otherwise generic.
These three classes are similar with respect to the three defined methods. We could define an

abstract base class for them. Or we could provide the following type hint:

PathQueue = ListQueue | DeQueue | ThreadQueue

This PathQueue type hint summarizes all three types, allowing us to define an object of any of these

three classes to use for the final implementation choice.

The question of “which is better?” is answered by the standard response of “what dimension are

you measuring?”
« For single-threaded applications, collections.deque will be fastest, if that’s the goal.

« For multithreaded applications, queue . Queue is required to provide a data structure that can

be read and written by multiple concurrent threads. We’ll return to this in Chapter 14.

While we can often leverage a built-in structure, such as the generic 1ist class, for a wide variety of
purposes, it may not be ideal. The other two implementations offer advantages over the built-in list.
Python’s standard library, and the broader ecosystem of external packages available through the

Python Package Index (PyPI), can provide improvements over generic structures. What’s important

Chapter 8 241

is having a specific goal in mind before searching high and low for a “best” package. In our example,
the performance difference between deque and list is small. The time is dominated by the OS
work required to gather the raw data. For a large filesystem, perhaps spanning multiple hosts, the

tiny difference will add up.

Python’s object orientation gives us the latitude to explore design alternatives. We should feel free
to try more than one solution to a problem as a way to better understand the problem, and arrive at

an acceptable solution.

Recall

We’ve explored a variety of built-in Python data structures in this chapter. Python lets us do a great
deal of object-oriented programming without the overheads of numerous, potentially confusing,

class definitions. We can rely on a number of built-in classes where they fit our problem.
In this chapter, we looked at the following:

« Tuples and named tuples let us leverage a simple collection of attributes. We can extend the

NamedTuple definition to add methods when those are necessary.

« Dataclasses provide sophisticated collections of attributes. A variety of methods can be

provided for us, simplifying the code we need to write.

« Dictionaries are an essential feature, used widely in Python. There are many places where
keys are associated with values. The syntax for using the built-in dictionary class makes it

easy to use.
« Lists and sets are also first-class parts of Python; our applications can make use of these.

« We also looked at three types of queues. These are more specialized structures with more
focused patterns of access than a generic list object. The idea of specialization and narrowing
the domain of features can lead to performance improvements, too, making the concept

widely applicable.

Exercises

The best way to learn how to choose the correct data structure is to do it wrong a few times
(intentionally or accidentally!). Take some code you’ve recently written, or write some new code
that uses a list. Try rewriting it using some different data structures. Which ones make more sense?

Which ones don’t? Which have the most elegant code?

242 Python Data Structures

Try this with a few different pairs of data structures. You can look at examples you’ve done for
previous chapter exercises. Are there objects with methods where you could have used dataclasses,
namedtuple, or dict instead? Attempt both and see. Are there dictionaries that could have been
sets because you don’t really access the values? Do you have lists that check for duplicates? Would
a set suffice? Or maybe several sets? Would one of the queue implementations be more efficient? Is

it useful to restrict the API to the top of a stack rather than allowing random access to the list?

Have you written any container objects recently that you could improve by inheriting a built-in
and overriding some of the special double-underscore methods? It takes some work to find out
which methods need overriding. You can get some ideas using built-in dir() and help() functions

to explore a class. The Python library reference provides a lot of details.

Are you sure inheritance is the correct tool to apply? Could a composition-based solution be more
effective? Try both (if it’s possible) before you decide. Try to find different situations where each
method is better than the other.

If you were familiar with the various Python data structures and their uses before you started
this chapter, you may have been bored. But if that is the case, there’s a good chance you use data
structures too much! Look at some of your old code and rewrite it to use more self-made classes.
Carefully consider the alternatives and try them all out. Which one makes for the most readable

and maintainable system?

The MultiItem example was trying to handle a variety of subtypes, each with a distinct set of
optional fields. The presence of an optional attribute is a suggestion that — perhaps — there are
distinct classes struggling to separate from each other. What happens if we distinguish between
two closely related but distinct classes: LocalItem (which uses timestamp) and RemoteItem (which
uses created_date)? We can define a common type hint as LocalItem | RemoteItem. If each
class has a property such as creation_datetime that computes a datetime.datetime object, would
processing be simpler? Build the two classes; create some test data. How does it look to separate

the two subtypes?

Always critically evaluate your code and design decisions. Make a habit of reviewing old code and
take note of whether your understanding of good design has changed since you wrote it. Software
design has a large aesthetic component, and like artists with oil on canvas, we all have to find the

style that suits us best.

Chapter 8 243

Summary

We've covered several built-in data structures and attempted to understand how to choose them for
specific applications. Sometimes, the best thing we can do is create a new class of objects, but often,
one of the built-ins provides exactly what we need. When it doesn’t, we can always use inheritance
or composition to adapt them to our use cases. We can even override special methods to completely

change the behavior of built-in syntaxes.

In the next chapter, we’ll discuss how to integrate the object-oriented and not-so-object-oriented
aspects of Python. Along the way, we’ll discover that it’s more object-oriented than it looks at first

sight!

The Intersection of
Object-Oriented and
Functional Programming

There are many aspects of Python that appear more like functional programming than object-
oriented programming. Although object-oriented programming is the focus of this book, there
are compelling use cases for functional programming techniques. With Python, the underlying
implementation is object-oriented. However, using some functional design techniques can make
code more expressive. In this chapter, we’ll be covering a grab bag of Python features that are not

strictly object-oriented:
+ Built-in functions that take care of common tasks in one call
« An alternative to method overloading
« Functions as objects

This chapter will scratch the surface of a very deep topic. For a deeper dive, see Functional Python

Programming,

246 The Intersection of Object-Oriented and Functional Programming

https://www.packtpub.com/en-us/product/functional-python-programming-97817886270
61.

We'll start this chapter by looking at some of Python’s built-in functions. Some of these are closely
related to class definitions, allowing us to use a functional style of programming with the underlying

objects.

Python built-in functions

There are numerous functions in Python that perform a task or calculate a result on certain types of
objects without seeming to involve obvious methods of the underlying class. They usually abstract
common calculations that apply to multiple types of classes. This is duck typing at its best; these
functions accept objects that have certain attributes or methods, and are able to perform generic
operations using those methods. We’ve used many of the built-in functions already. We’ll take a

look at three common ones:
« The 1en() function
« The reversed() function
« The enumerate() function

We'll start with the len() function.

The 1en() function

The 1en() function returns the number of items in some kind of container object, such as a dictionary,

set, tuple, or list. You’ve seen it before, demonstrated as follows:

>>> len([1, 2, 3, 4])

4

You may wonder why these objects don’t have a length method or property instead of having to
call a function on them. Technically, they do have a method. Most objects that 1en() will apply to

will define a method called __len__() that computes the value.
This means an expression like len(myobj) will call myobj.__len__ ().

Why should we use the len() function instead of the __len__() method? Obviously, __len__()
is a special double-underscore method, suggesting that we shouldn’t call it directly. Why have

a length() method we can call directly? There must be an explanation for this. The Python

https://www.packtpub.com/en-us/product/functional-python-programming-9781788627061
https://www.packtpub.com/en-us/product/functional-python-programming-9781788627061

Chapter 9 247

developers don’t make such design decisions lightly.

The main reason is efficiency. When we evaluate the __len__() method of an object, the object has
to look the method up in its namespace, and, if the special __getattribute__() method (which is
called every time an attribute or method on an object is accessed) is defined on that object, it has
to be called as well. If the name isn’t in the instance, then each class must be searched in Method
Resolution Order until the method is found. The len() function doesn’t encounter any of this
overhead. It actually calls the __len__() method on the underlying class directly, so 1en(myobj)
maps to MyObj.__len__(myobj).

Another reason is clarity. The len(x) syntax can be easier to understand than x.length(). The

notation fits mathematical formalisms — where functional notation is more common.

It’s not perfectly clear, but any class that includes the Sized abstract base class will work with the
len() function. The names don’t align well, but the concept of a specific protocol having a specific

function that supports that protocol is a pleasant symmetry.

The reversed() function

The reversed() function takes any sequence as input and returns a copy of that sequence in reverse

order. It is normally used in for statements when we want to iterate over items from back to front.

Similar to the 1en() function, reversed() prefers to call the __reversed__() method on the class for
the parameter. If that method does not exist, reversed builds the reversed sequence itself using calls
to__len_ () and __getitem__(), which are used to define a sequence. We only need to override
__reversed__() if we want to somehow customize or optimize the process, as demonstrated in the

following code:

from collections.abc import Sequence, Iterator
from typing import Any

class CustomSequence(Sequence[Any]):

def __init_ (self, arg: Sequence[Any]) -> None:
self._list = arg

def _ _len_ (self) -> int:
This doesn't seem right, does it?
return 5

def __getitem__(self, index: int | slice) -> Any:
return f"x{index}"

248 The Intersection of Object-Oriented and Functional Programming

class FunkyBackwards(list[Any]):
def _ reversed__ (self) -> Iterator[Any]:
return iter("BACKWARDS!")

We’ve called out the __len__() method for ignoring the value of self._list and returning a literal
5 every time. If the list actually as 5 items, this will work. It’s sketchy code, but it helps reveal how

Python works internally.

Let’s exercise this function on three different kinds of lists:

>>> generic = [1, 2, 3, 4, 5]

>>> custom = CustomSequence([6, 7, 8, 9, 10])

>>> funkadelic = FunkyBackwards([11, 12, 13, 14, 15])
>>> for sequence in generic, custom, funkadelic:

print(f"{sequence.__class__.__name__}: ", end="")

for item in reversed(sequence):
print(f"{item}, ", end="")
.. print()
list: 5, 4, 3, 2, 1,

CustomSequence: x4, x3, x2, x1, x0,
FunkyBackwards: B, A, C, K, W, A, R, D, S, !,

The for statement prints reversed versions of a generic list object, and instances of the CustomSequence
class and the FunkyBackwards class. The output shows that the reversed() works on all three of

them, but can have very different results.

When we reverse CustomSequence, the __getitem__() method is called for each item; this returns
a string of x followed by the index; not the actual value from the sequence. For FunkyBackwards,
the __reversed__() method returns a string, each character of which is output individually in the

for statement.

The CustomSequence class is incomplete. It doesn’t define a proper version of the __iter_ ()

method, so a forward for loop over them will never end. This is the subject of Chapter 10.

The enumerate() function

Sometimes, when we’re examining items in a container with a for statement, we want access to the

index (the current position in the container) as well as the current item being processed. The for

Chapter 9 249

statement doesn’t provide us with indexes, but the enumerate () function gives us something better:
it creates a sequence of tuples, where the first object in each tuple is the index and the second is the

original item.

This is useful because it assigns an index number. It works well for sets or dictionaries where there
isn’t an inherent index order to the values. It also works for text files, which have an implied line
number. Consider some simple code that outputs each of the lines in a file with the associated line

numbers. Here’s some code with the output:

>>> from pathlib import Path
>>> with open(Path.cwd() / "data" / "sample_data.md") as source:
for index, line in enumerate(source, start=1):
. print(f"{index:3d}: {line.rstrip()}")
1: # Python 3 Object-Oriented Programming

2:

3: ## Chapter 9. The Intersection of Object-Oriented and Functional
Programming

4:

5: Some sample data to show how the “enumerate()”~ function works.

The enumerate () function is an iterable: it yields tuples until it’s out of data. Our for statement
splits each tuple into two values, and the print() function formats them. We used the optional

start=1 on the enumerate() function to provide a conventional 1-based sequence of line numbers.

We've only touched on a few of the more important Python built-in functions. As you can see, many
of them leverage the foundational object-oriented concepts. They can also work in a functional
programming paradigm. There are numerous others in the standard library; some of the more

interesting ones include the following:

« abs(), str(), repr(), pow(), and divmod() map directly to the special methods __abs__(),

str__ (), __repr_ (), _pow__(),and __divmod__()

+ bytes(), format(),hash(),andbool() also map directly to the special methods __bytes__(),
__format__ (), _hash__(),and __bool__()

Section 3.3, Special method names of The Python Language Reference, provides the details of these

mappings. Other interesting built-in functions include the following:

« all() and any(), which accept an iterable object and return True if all, or any, of the items

evaluate to true (such as a non-empty string or list, a non-zero number, an object that is not

250 The Intersection of Object-Oriented and Functional Programming

None, or the literal True).

« eval(), exec(), and compile(), which execute string as code inside the interpreter. Be
careful with these ones; they are not safe, so don’t execute code an unknown user has

supplied to you (in general, assume all unknown users are malicious, foolish, or both).

« hasattr(), getattr(), setattr(), and delattr(), which allow attributes on an object to

be manipulated by their string names.

« zip(), which takes two or more sequences and returns a new sequence of tuples, where each

tuple contains a single value from each sequence.

« And many more! See the interpreter help documentation for each of the functions listed in

help(“builtins”).

What'’s central is avoiding the narrow viewpoint that an object-oriented programming language
must always use object.method() syntax for everything. Python strives for readability, and a
simple len(collection) seems more clear than the slightly more consistent potential alternative,

collection.len().

An alternative to method overloading

One prominent feature of some object-oriented programming languages is a feature called method
overloading. Method overloading refers to having multiple method definitions with the same name,
each of which accept different sets of parameters. In statically typed languages, this is useful if we
want to have a method that accepts either an integer or a string, for example. In non-object-oriented
languages, we might need two functions, called add_s () and add_i() — one for strings, one for
integers — to accommodate such situations. In statically typed object-oriented languages, one
approach is to permit definition of two methods, both called add, one that accepts strings, and one

that accepts integers.

In Python, we’ve already seen that we only need one method, which accepts any type of object. It
may have to do some matching of the object’s type (for example, if it is a string, convert it to an
integer), but only one method is required. The match-case statement does sophisticated structural

type matching, allowing tremendous flexibility.
We have to distinguish between two varieties of overloading here:
« Overloading a parameter to allow alternative types. There are two approaches for this:

— In Chapter 6, a special @overload decorator was used for a particularly complicated

Chapter 9 251

case.

— Another choice is a type union hint to show that a parameter can have values of type

int | str.

These alternative definitions are ways to clarify our intent so tools like mypy can confirm

that we’re using the overloaded parameter properly.

« Overloading the method as a whole by using more complex patterns of parameters, including

optional parameters.

For example, an email message method might come in two versions, one of which accepts a
parameter for the from email address. The other method might look up a default from email address
instead. Python lets us define parameters that are optional. This has the effect of allowing one

method to have distinct signatures using different patterns of parameter.

We've seen some of the possible ways to send argument values to methods and functions in previous
examples, but now we’ll cover all the details. The simplest function accepts no parameters. It is

defined with a name and empty () for the parameters.

When calling any function, the values for the positional parameters must be specified in order, and
no parameter can be omitted. This is the most common way in which we’ve specified parameters

in our previous examples. Here’s how this looks:

from typing import Any

def mandatory_params(x: Any, y: Any, z: Any) -> str:
return f"{x=}, {y=}, {z=}"

To call it, we use the following:

>>> a_variable = 42

>>> mandatory_params("a string", a_variable, True)
"x='a string', y=42, z=True"

Python code is generic with respect to type. This means that any type of object can be passed as an
argument value: an object, a container, a primitive, even functions and classes. The preceding call

shows a string literal, the value of a variable, and a Boolean literal passed into the function.

Generally, our applications are not completely generic. We've designed them around specific types

252 The Intersection of Object-Oriented and Functional Programming

that are required in order for the function or method to work properly. That’s why we often provide
type hints to narrow the domain of possible values. In the rare case when we’re writing something
truly generic, we can use the typing.Any hint to tell tools like mypy that we really mean that any

object is usable.

We can use tools to locate code with Any. The mypy tool uses the -/-disallow-any-expr option

to flag lines that may be in need of some clarity on what types are really important.

Default values for parameters

If we want to make a parameter’s value optional, we do this by providing a default value. If the
calling code does not supply an argument value for the parameter, it will be assigned the given
default value. This means calling code can still choose to override the default by passing in a
different value. If a value of None is used as the default for optional parameter values, we’ll often
use the SomeType | None = None hint to make it clear that the argument value must be of a given

type, otherwise the None object will be used.

Here’s a function definition with default parameter definitions:

def latitude_dms(
deg: float, min: float, sec: float = 0.0, dir: str | None = None
) -> str:
if dir is None:
dir = "N"
return f"{deg:02.0f}° {min+sec/60:05.3f}{dir}"

The first two parameters are mandatory and must be provided. The last two parameters have default

argument values and can be omitted.

The sec parameter has a useful value of @.0. The dir parameter, has the generic place-holder of

None. In this case, a proper default is computed within the body of the function.

There are several ways we can call this function. We can supply all argument values in order, as

though all the parameters were positional, as can be seen in the following:

>>> latitude_dms(36, 51, 2.9, "N")

'36° 51.048N'

Alternatively, we can supply just the mandatory positional argument values in order, allowing one

Chapter 9 253

of the keyword parameters (sec) to use a default value, and providing a keyword argument for the

dir parameter:

>>> Jatitude_dms (38, 58, dir="N")

'38° 58.000N'

We've used equals sign syntax when calling a function to skip default values that we aren’t interested
in.
Surprisingly, we can even use the equals sign syntax to mix up the order of arguments for the

positional parameters, so long as all the parameters are given an argument value:

>>> Jatitude_dms (38, 19, dir="N", sec=7)

'38° 19.117N'

You may occasionally find it useful to make a keyword-only parameter. To use this, the argument
value must be supplied as a keyword argument. You can do that by defining a parameter of * to

separate the keyword-optional parameters from the keyword-only parameters:

def kw_only(x: Any, y: str = "defaultkw", *, a: bool, b: str = "only") ->
str:
return f"{x=}, {y=}, {a=}, {b=}"

The * is not used as a multiplication operator here. Instead, it’s used all alone to break the parameters

into two groups.

This function has one positional parameter, x, and three keyword parameters, y, a, and b. The x and
a parameters are both mandatory, but a can only be passed as a keyword argument. The y and b

are both optional with default values, but if b is supplied, it can only be a keyword argument.

Because there are so many parameter definitions, we’ve sprawled them out onto multiple physical

lines. The enclosing ()’s make this one logical line, and make the whole somewhat easier to read.

This function fails at runtime if you don’t pass a:

>>> kw_only('x")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: kw_only() missing 1 required keyword-only argument:

a

254 The Intersection of Object-Oriented and Functional Programming

It also fails at runtime if you try to pass a as a positional argument:

>>> kw_only('x', 'y', 'a')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: kw_only() takes from 1 to 2 positional arguments but 3 were given

But you can pass a and b as keyword arguments:

>>> kw_only('x', a='a', b='b")

"x='x"', y='defaultkw', a='a', b='b"'"

For the most part, tools to check type hints will spot invalid use of these functions. We can, of
course, baffle the tools with really obscure coding techniques, like using kw_only (**some_dict) to

provide the arguments as a dictionary.

We can also mark parameters as being supplied only by position. We do this by providing these
names before a single / parameter to separate the positional-only parameters from the more flexible

parameters that follow.

>>> pos_only(x=2, y="three")
Traceback (most recent call last):

The / is not used as the true division operator here. Instead, it’s used all alone to break the parameters

into two groups.

This function requires argument values for the x and y parameters to be the first two. Further,

named arguments for x and y are specifically not permitted. Here’s what happens at runtime if we

try:

>>> pos_only(x=2, y="three")
Traceback (most recent call last):

File "<doctest hint_examples.__test__.test_pos_only[@]>", line 1, in
<module>

pos_only(x=2, y="three")
TypeError: pos_only() got some positional-only arguments passed as keyword

arguments: 'x, y
>>> pos_only(2, "three")

Chapter 9 255

"x=2, y='three', z=None"

>>> pos_only (2, "three", 3.14159)
"x=2, y='three', z=3.14159"

We must provide argument values for the first two parameters, x and y, positionally. The third

parameter, z, can be provided positionally, or with a keyword.

This can feel like it makes things a bit more complicated than they need to be. We agree with this
assessment. The / for positional-only arguments is a rarity in Python. The most common use is in
cases where the implementation of a Python method or function is written in a language like C (or

Rust) where the full flexibility of native Python isn’t available.
We’ve seen three separate kinds of parameter possibilities:

+ Positional only: These are handy in a few cases. If used, the positional-only parameters
end with the special / parameter. See PEP 570 for examples: https://www.python.org/dev
/peps/pep-0570.

« Either positional or keyword: This is the case for most parameters. The order is designed to
be helpful, and keywords can be used for clarification. More than three positional parameters

invites confusion, so a long list of positional parameters isn’t a great idea.

+ Keyword only: After the special * parameter, the argument values must have a keyword
supplied. This can be helpful to make rarely used options more visible. It can help to think

of keywords as keys to a dictionary.

Choosing a pattern of parameter use often takes care of itself, depending on which values need to
be supplied and which can be left at their defaults. For simple methods with a few argument values,
positional parameters are more or less expected. Most mathematical operators have two operands.
In some rare cases, as many as three are involved, but it requires tricky type-setting techniques to
find a place to put the third operand. For this reason, when we say “a few,” we often mean three or
fewer. For complex methods with a lot of argument values, using keywords helps to clarify how

things work.

Additional details on defaults
One thing to take note of with keyword arguments is that anything we provide as a default argument
is evaluated exactly once when the function is first created. The argument is not evaluated again.

This means we can’t have dynamically generated default values. For example, the following code

https://www.python.org/dev/peps/pep-0570
https://www.python.org/dev/peps/pep-0570

256 The Intersection of Object-Oriented and Functional Programming

won’t behave quite as expected:

number = 5

def funky_function(x: int = number) -> str:
return f"{x=}, {number=}"

The default value for the x parameter is the current value when the function is defined. We can see

that behavior when we try to evaluate this with different values for the number variable:

>>> funky_function(42)
'X=42, number=5"'

>>> number = 7
>>> funky_function()
'x=5, number=5"'

The first evaluation looks like our expectation; the default value is the original value of the number
variable. This is a coincidence. The second evaluation, after changing the global variable, number,
shows that the function definition has a fixed value for the default — the default value is not

re-evaluated.

To make this work, we’ll often use None as a default value and assign the current value of a global

variable within the body of the function:

def better_function(x: Optional[int] = None) -> str:
if x is None:
X = number
return f"better: {x=}, {number=}"

This better_function() does not have a value for the number variable bound into the function
definition. It uses the current value of a global number variable. Yes, this function is implicitly
dependent on a global variable, and the docstring should explain that, ideally surrounded by flame
emojis to make it clear to anyone reading it how the function’s results may not be obviously

idempotent.

It’s common practice to use a name like NUMBER for a global variable; this makes it stand out. Note

that we didn’t use the global statement for a read-only global variable. The global statement is

Chapter 9 257

only needed to update the value of a global variable.

A slightly more compact way to set a parameter value to an argument or a default looks like this:

def better_function_2(x: Optional[int] = None) -> str:
X = number if x is None else x
return f'"better: {x=}, {number=}"

The number if x is None else x expression seems to make it clear that x will have the value of

the global, number, or the argument value provided for x.

The “evaluation at definition time” can trip us up when working with mutable containers such as
lists, sets, and dictionaries. It seems like a good design decision to make an empty list (or set or
dictionary) as a default value for a parameter. We should never do this because the definition will
create only one instance of the mutable object as part of the definition. This one object will be

reused, demonstrated as follows:

def bad_default(tag: str, history: list[str] = []) -> list[str]:
"""A Very Bad Design (VBD™)."""
history.append(tag)
return history

This is very bad design. We can try to create a history list, h, and append things to it. This seems to
work. Spoiler alert: the default object is one specific mutable 1ist that’s implicitly shared:

>>> h bad_default("tagl")
>>> h bad_default("tag2", h)
>>> h

['tagl', 'tag2']

>>> h2 bad_default("tag21l")

>>> h2 bad_default("tag22", h2)
>>> h2

['tagl', 'tag2', 'tag2l', 'tag22']

Whoops, that’s not quite what we expected! When we tried to create a second history list, h2, it
had values from the first history list, h. This is because the h2 default value was the same (and only)

default value used for h. We can see that using the is operator:

258 The Intersection of Object-Oriented and Functional Programming

>>> h
['tagl', 'tag2', 'tag2l', 'tag22']

>>> h is h2
True

Consequently, we never provide default values that are mutable objects. Lint-checking tools like
ruff will warn us of using a mutable default value in a function definition. Instead of an empty list,

set, or dictionary, we use None. It looks like this:

def good_default(tag: str, history: Optional[list[str]] = None) ->
list[str]:
history = [] if history is None else history
history.append(tag)
return history

This will build a fresh, empty list[str] object if no parameter was supplied. This is the best way

to work with default values that are also mutable objects.

Variable argument lists
Default values alone do not allow us all the flexibility we might want. One thing that makes Python

really slick is the ability to write methods that accept an arbitrary number of positional or keyword
arguments without explicitly naming them. We can also pass arbitrary lists and dictionaries into
such functions. In other languages, these are sometimes called variadic arguments, varargs, and
the programming techniques required to make them work are often hidden in macro definitions, In

Python, all we need to do is be prepared to handle a tuple.

For example, we could write a function to accept a single URL or list of URLs and download the
named web page resources. The idea is to avoid the confusing-looking overhead of a singleton list
when we only want one page downloaded. We would like get_pages (“http:..."). This seems

nicer than get_pages([“http:..."1) with a list of one item.

We do this by defining one positional parameter to receive all the argument values. This parameter
has to be last (among the positional parameters), and we’ll decorate it with a * prefix for the

parameter name, as follows:

Chapter 9 259

from urllib.parse import urlparse
from pathlib import Path

def get_pages(*1links: str) -> None:
for link in links:
url = urlparse(link)
name = "index.html" if url.path in ("", "/") else url.path
target = Path(url.netloc.replace(".", "_")) / name
print(f"Create {target} from {link!r}")
etc.

The * prefix to the links parameter says, accept any number of argument values and put them all in
a tuple named 1inks. If we supply only one argument, it will be a tuple with one element; if we

supply no arguments, it will be an empty tuple. Thus, all these function calls are valid:

>>> get_pages()

>>> get_pages('https://www.archlinux.oxg")
Create www_archlinux_org...index.html from 'https://www.archlinux.oxg'

>>> get_pages('https://www.archlinux.oxrg',
"https://dusty.phillips.codes',
"https://itmaybeahack.com'
)
Create www_archlinux_org...index.html from 'https://www.archlinux.oxg'
Create dusty_phillips_codes...index.html from 'https://dusty.phillips.codes'
Create itmaybeahack_com...index.html from 'https://itmaybeahack.com'

Note that our type hint suggested that all of the positional argument values are of the same type,
str. This is a widespread expectation: the variable parameters feature is little more than syntactic
sugar, saving us from writing a dumb-looking list with only one item for those cases where there’s

only a single URL.

We can also accept arbitrary keyword arguments. These arrive in the function as a dictionary. They
are specified with a double-asterisk prefix on the parameter name — **kwargs, for example, in the
function declaration. This form is commonly used in configuration setups where there are a lot of

optional values. The following class allows us to specify a set of options with default values:

260 The Intersection of Object-Oriented and Functional Programming

from typing import Any

class Options(dict[str, Any]):
default_options: dict[str, Any] = {
"port": 21,
"host": "localhost",
"username": None,
"password": None,
"debug": False,

def __init__ (self, **kwargs: Any) -> None:
super().__init__ ({**self.default_options, **kwargs})

This class leverages a feature of the __init__ () method for the dict class. We have a dictio-
nary of default options, with the boring name of default_options, defined as part of the class.
The __init__ () method accepts a dictionary of keyword parameters. It computes a new dictio-
nary from the default values, applying the argument values to create a dictionary that has both.
Then, this dictionary is used to initialize the object. Note that the order of the expressions in
{**self.default_options, **kwargs} matters. We want the supplied keys and values to replace

the default keys and values.

Also note that tools to create documentation from the code (like Sphinx or epydoc) won’t uncover
the details of the default values. Don’t astonish your users: be sure the defaults are described in the

documentation.

Here’s a session demonstrating the class in action:

>>> options = Options(username="dusty", password="Hunter2",

debug=True)
>>> options|['debug']
True
>>> options|['port']
21
>>> options['username']
'dusty’

We’re able to access our options instance using dictionary indexing syntax. The Options dictionary

includes both default values and the ones we set using keyword arguments.

Chapter 9 261

Note that the parent class is dict[str, Any]; the class for a generic dictionary limited to strings for

keys. When we initialize the default_options object, we provide a matching hint for this variable.

In the preceding example, it’s possible to pass arbitrary keyword arguments to the Options initializer.
This could include keys that don’t exist in the default dictionary. This can be good when adding
new features to an application. This can be bad when debugging a spelling mistake. Providing the
“Port” option instead of the “port” option will lead to two similar-looking options where only one

should have existed.

One way to limit the risk of spelling mistakes is to write our own version of a dictionary update
to limit changes to replacing existing keys. This can prevent misspellings from creating problems.

The solution is interesting and we’ll leave it as an exercise for you.

Keyword arguments are also very useful when we need to accept arbitrary arguments to pass to
a second function, but we don’t know what those arguments will be. We saw this in action in

Chapter 3, when we were building support for multiple inheritance.

We can, of course, combine the variable argument and variable keyword argument syntax in one
function call, and we can use normal positional and default arguments as well. It’s hard to find a
use for all of these features in one place. While the following example is contrived, the syntax is
the focus, and this example demonstrates the four methods of providing values for parameters in

action:

import contextlib
from typing import TextIO, Any
from pathlib import Path

def doctest_everything(
output: TextIO,
*directories: Path,
verbose: bool = False,
**stems: str,
) -> None:
if verbose:
log = print
else:
def log(*args: Any, **kwars: Any) -> None:
pass

262

The Intersection of Object-Oriented and Functional Programming

with contextlib.redirect_stdout(output):
for directory in directories:
log(f"Searching {directory}")
for dirpath, dirnames, filenames in directory.walk():
remove_excluded(dirnames)

for name in filenames:
if not name.endswith('.py'):
continue
path = (dirpath / name).relative_to(Path.cwd())
log(
f"File {path}, "
f"{path.stem=}"
)

options = stems.get(path.stem, "")
if options.upper() == "SKIP":
log("Skipped")
continue
doctest_opts = (options.uppexr().split(",") if options
else [])

r = run_test(path, doctest_opts)
if r.returncode:
log(r.stderr)

This example has an extraordinary number of parameters. It processes an arbitrary list of directory

paths where it runs the doctest tool on the files found in those directories. Let’s look at each

parameter definition in detail:

The first parameter, output, is an open file to which output will be written.

The directories parameter will be given all of the remaining positional (also called non-

keyword) arguments. These should all be Path() objects.

The verbose parameter is a keyword only because it appears after a *name parameter that
collects all positional values. It tells the function whether to print information about each

file processed.

Finally, all other keywords create a dictionary called stems. These need to be the stem of a
filename; the associated value will be a special processing concern. Note that four names —
output, directories, verbose, and stems — are effectively special filenames that can’t be

given special processing; these are ordinary parameter names.

Chapter 9 263

Specifically, if a file stem has a value of “SKIP”, the file won’t be tested. Any other value is
used to create the option flags for the doctest tool. Providing a some_module="ellipsis”
parameter, for example, means the the ELLIPSIS option will be given to the doctest tool for

a module with a name of some_module.py.

When needed, this function will create an inner helper function, log(). This is either the print()
function or a placeholder that silences the output. This lets us use log(“message”) everywhere,

knowing it can be silenced at runtime.

Within the body of the function, the with statement redirects all output normally sent to sys . stdout
to the desired file. This lets us collect a single log from print () functions without having to put
file= options everywhere. The for statement iterates through all the positional argument values
collected into the directories parameter. Each directory is examined with the walk() method to

locate all files and subdirectories.

A common part of the top-down walk processing is to remove directory names that should be
excluded and avoid the overhead of examining the files inside them. A remove_excluded() function

— which isn’t shown — removes names like .tox and .venv that should not be examined.

A file’s stem is the name without any path or suffix. So ch_03/docs/examples.py has a stem
of examples. If the stem is used as a keyword argument, the value of that argument provides
additional details of what to do for files with that specific stem. As noted above, the keyword
argument examples='SKIP' will populate the **stems dictionary, and any file with a stem of
examples will be skipped. (And yes, this design won’t work well when multiple files have the same

stem in different directories.)

We’ve delegated the details of running the test tool to a function, run_test(). This function is
expected to build an environment and command line. It uses the subprocess.run() function to

invoke the doctest tool.

In common cases, the doctest_everything() function could be called as follows:

doctest_everything(
sys.stdout,
Path.cwd() / "ch_02",
Path.cwd() / "ch_@3",

This command would locate all the *. py files in these two directories and run doctest for each file.

264 The Intersection of Object-Oriented and Functional Programming

The output would appear on the console because we redirected sys.stdout back to sys.stdout.
Very little output would be produced because the verbose parameter would have a default value of

False.

If we want to collect detailed output, we can call it with the help of the following command:

doctest_log = Path("doctest.log")
with doctest_log.open("w") as log:
doctest_everything(
log,
Path.cwd() / "ch_04",
Path.cwd() / "ch_@5",
verbose=True,
colors="SKIP",

This tests files in the given directories and tells us what it’s doing. The output is captured in a file

instead of scrolling past in the terminal window.

Notice that it is impossible to specify verbose as a positional argument; we must pass this as a
keyword argument. Otherwise, Python would think the value of True or False was yet another
value for the *directories list. A type-hint checking tool will spot the problem. At runtime, the

problem will surface when attempting to use the boolean object as if it were a Path object.

Also note that any files with the stem of colors will be skipped. Consider how it might look if
there are a lot of files requiring special processing. It might require numerous keyword arguments,

as follows:

doctest_everything(
sys.stdout,
Path.cwd() / "ch_02",
Path.cwd() / "ch_03",
exceptions...
first_class="ELLIPSIS",
test_ecommerce="SKIP",
vendors="SKIP",

_ dinit_ ="SKIP",
products="SKIP",
main="SKIP",

square="SKIP",
stripe="SKIP",

Chapter 9 265

This will test two directories, but won’t display any output, since we didn’t specify verbose. This
will apply the doctest -/-ellipsis option to any file with a stem of first_class. Similarly, any
large number of files are all skipped.

Because we can provide any name we choose, and they will all be collected into the value of
the stems parameter, we can make use of this flexibility to match names of files in the directory
structures. There are, of course, a number of limitations on Python identifiers that don’t match
operating system filenames, making this less than perfect. It does, however, show the amazing

flexibility of Python function arguments.

Unpacking arguments

There’s one more nifty trick involving positional and keyword parameters. We've used it in some of
our previous examples, but it’s never too late for an explanation. Given a list or dictionary of values,
we can pass a sequence of values into a function as if they were normal positional or keyword

arguments. Have a look at this code:

def show_args(argl: Any, arg2: Any, arg3: Any="THREE") -> str:
return f"{argl=}, {arg2=}, {arg3=}"

The function accepts three parameters, one of which has a default value. But when we have a list of
three argument values, we can use the * operator inside a function call to unpack a sequence of

values so they are applied to the three arguments.

Here’s what it looks like when we run it with *some_args to provide a three-element iterable:

>>> some_args = range(3)

>>> show_args (*some_args)
'argl=0, arg2=1, arg3=2'

The value of *some_args has to match the positional parameter definition. Because there’s a default

value for arg3, making it optional, we can provide two or three values to this function.

If we have a dictionary of arguments, we can use the ** syntax to unpack a dictionary to supply

argument values for keyword parameters. It looks like this:

266 The Intersection of Object-Oriented and Functional Programming

more_args = {
"argl": "ONE",
"arg2": "TWO"}

>>> show_args (**more_args)
"argl='ONE', arg2='TWO', arg3='THREE'"

This is often useful when mapping information that has been collected from user input or from
an outside source (for example, an internet page or a text file) and needs to be provided to a
function or method call. Rather than decompose an external source of data into individual keyword
parameters, we simply provide the keyword parameters from the dictionary keys. An expression
like show_args (argl=more_args['argl’'], arg2=more_args[’'arg2’]) seems an error-prone way
to match a parameter name with the dictionary key. Does each argument name properly match the

key used to fetch it from the more_args dictionary?
This unpacking syntax can be used in some areas outside of function calls, too. Consider a class

__init__ () method that looks like this:

super().__init_ ({**self.default_options, **kwargs})

The expression {**self.default_options, **kwargs} will merge dictionaries through a two-step

process:
1. Unpack each dictionary into keyword arguments.
2. Assemble a final dictionary from two collections of keyword arguments.
Because the dictionaries are unpacked in order from left to right, the resulting dictionary will
contain all the default options, with any of the kwarg options replacing some of the keys. Here’s an
example:

1, 'b': 2}
11, 'c': 3}

**y}

This dictionary unpacking is a handy consequence of the way the ** operator transforms a dictionary

into named parameters for a function call.

Chapter 9 267

After looking at sophisticated ways we can provide argument values to functions, we need to look
at functions a little more broadly. Python considers functions as one kind of “callable” object. This
means functions are objects, and higher-order functions can accept functions as argument values

and return functions as results.

Functions are objects too

There are numerous situations where we’d like to pass around a small object that is simply called
to perform an action. In essence, we’d like an object that is also a callable function. This is most
frequently done in event-driven programming, such as graphical toolkits or asynchronous servers;

we’ll see some design patterns that use it in Chapter 11 and Chapter 12.

In Python, we don’t need to wrap such methods in a class definition because functions are already
objects! We can set attributes on functions (though this isn’t a common activity), and we can pass
them around to be called at a later date. They even have a few special properties that can be accessed

directly.

Here’s yet another contrived example, sometimes used as an interview question:

from typing import Callable

def fizz(x: int) -> bool:
return x % =0

def buzz(x: int) -> bool:
return x % == 0

def name_or_number(
number: int,
*tests: Callable[[int], bool]
) -> str:
for t in tests:
if t(number):
return t.__name__
return str(number)

The fizz() and buzz() functions check to see whether their parameter, x, is an exact multiple of
another number. This relies on the definition of the modulo operator: if x is a multiple of 3, then 3

divides x with no remainder. Sometimes they say x = 0 mod 3 in math books. In Python, we say x

268 The Intersection of Object-Oriented and Functional Programming

% 3 == 0.

The name_or_number () function uses any number of test functions, provided as the tests parameter
value. The for statement assigns each function in the tests collection to a variable, t, then evaluates
the variable with the number parameter’s value. If the exact division function’s value is true, then

the result is the function’s name. (As we’ll see later, there’s a subtle bug here.)

Here’s how this function looks when we apply it to a number and another function:

>>> name_or_number(1l, fizz)
K
>>> name_or_number(3, fizz)

'fizz'
>>> name_or_number(5, fizz)
5

In each case, the value of the tests parameter is (fizz,) a tuple that contains only the fizz
function. The name_or_number () function evaluates t (number), where t is the fizz () function.
When fizz(number) is true, the value returned is the value of the function’s __name__ attribute —

the ' fizz’ string. Function names are available at runtime as an attribute of the function.

What if we provide multiple functions? Each is applied to the number until one is true:

>>> name_or_number (5, fizz, buzz)

'buzz'

This is, by the way, not completely correct. What should happen for a number like 15? Is it fizz or
buzz or both? Because the number 15 is both, some work needs to be done in the name_or_numbex ()
function to collect all the names of all the true functions. That sounds like it would make a good

exercise.

We can add to our list of special functions. We might define bazz () to be true for multiples of seven.

This, too, sounds like a good exercise.

If we run this code, we can see that we were able to pass two different functions into our

name_or_number () function, and get different output for each one:

>>> for i in range(1l, 11):

print(name_or_number (i, fizz, buzz))

Chapter 9 269

We could apply our functions to an argument value using t (number). We were able to get the value

of the function’s __name__ attribute using t.__name__.

Function objects and callbacks

The fact that functions are top-level objects is most often used to pass them around to be executed
at a later date, for example, when a certain condition has been satisfied. Callback functions are
common as part of building a user interface: when the user clicks on something, the framework can
call a function so the application code can create a visual response. For very long-running tasks,
like file transfers, it is often helpful for the transfer library to call back to the application with status
on the number of bytes transferred so far — this makes it possible to display status thermometers

to show the progress of the transfer.

Let’s build an event-driven timer using callbacks so that things will happen at scheduled intervals.
This can be handy for an IoT (Internet of Things) application built on a small CircuitPython or
MicroPython device. We’ll break this down into two parts: a task, and a scheduler that executes the

function object stored in the task:

from collections.abc import Callable
from dataclasses import dataclass, field
import heapq

import time

type Callback = Callable[[int], None]

@dataclass(frozen=True, order=True)
class Task:

270 The Intersection of Object-Oriented and Functional Programming

scheduled: int

callback: Callback = field(compare=False)
delay: int = field(default=0, compare=False)
limit: int = field(default=1, compare=False)

def repeat(self, current_time: int) -> "Task | None":

if self.delay > @ and self.limit > 2:
return Task(
current_time + self.delay,
self.callback,
self.delay,
self.limit - 1,
)
elif self.delay > 0 and self.limit
return Task(
current_time + self.delay,
self.callback,

I
n
N

)
else:
return None

The Task class definition has two mandatory fields and two optional fields. The mandatory fields,
scheduled and callback, provide a scheduled time to do something and a callback function, the
thing to be done at the scheduled time. The scheduled time has an int type hint; the time module
can use floating-point time, for super-accurate operations. We’re going to ignore these details. Also,
the mypy tool is well aware that integers can be coerced to floating-point numbers, so we don’t

have to be super-fussy-precise about numeric types.

The callback has a hint of Callable[[int], None]. This summarizes what the function defini-
tion should look like. To match this type hint, any callback function we write should look like
def some_name(an_arg: int) -> None:. If it doesn’t match, mypy will alert us to the potential

mismatch between our callback function definition and the contract specified by the type hint.

The repeat () method can return a task for those tasks that might repeat. It computes a new time for
the task, provides the reference to the original function object, and may provide a subsequent delay
and a changed limit. The changed limit will count the number of repetitions toward zero, giving us

a defined upper limit on processing; it’s always nice to be sure that iteration will terminate.

Chapter 9 271

Here’s the overall Scheduler class that uses these Task objects and their associated callback func-

tions:

class Scheduler:

def __init_ (self) -> None:
self.tasks: list[Task] = []

def enterx(
self,
after: int,
task: Callback,
delay: int = 0,
limit: int = 1,
) -> None:
new_task = Task(after, task, delay, limit)
heapq.heappush(self.tasks, new_task)

def run(self) -> None:
current_time = 0
while self.tasks:
next_task = heapq.heappop(self.tasks)
if (delay := next_task.scheduled - current_time) > 0:
time.sleep(delay)
current_time = next_task.scheduled
next_task.callback(current_time)
if again := next_task.repeat(current_time):
heapq.heappush(self.tasks, again)

The central feature of the Scheduler class is a heap queue, a list of Task objects kept in a specific
order. We mentioned the heap queue in the Three types of queues section of Chapter 8, noting that
the priority ordering made it inappropriate for that use case. Here, however, the heap data structure
makes use of the flexibility of a list to keep items in order without the overhead of a complete
sort of the entire list. In this case, we want to keep items in order by the time they’re required to
be executed: “first things first” order. When we push something to a heap queue, it’s inserted so
the time order will be maintained. When we pop the next thing from the queue, the heap may be

adjusted to keep the first things at the front of the queue.

The Scheduler class provides an enter () method to add a new task to the queue. This method

accepts a delay parameter representing the interval to wait before executing the callback task, and

272 The Intersection of Object-Oriented and Functional Programming

the task function itself, a function to be executed at the correct time. This task function should fit

the type hint of Callback, defined previously.

There are no runtime checks to ensure the callback function really does meet the type hint. It’s
only checked by mypy. More importantly, the after, delay, and 1imit parameters should have
some validation checks. For example, a negative value of after or delay should raise a ValueExrror
exception. There’s a special method name, __post_init__(), that a dataclass can use for validation.
This is invoked after __init__() and can be used for other initialization, pre-computing derived

values, or validating that the combination of values is sensible.

The run() method removes items from the queue in order by the time they’re supposed to be
performed. If we're at (or past) the required time, then the value assigned to the delay variable by
the := operator will be zero or negative, and we don’t need to wait; we can perform the callback

immediately. If this runs before the required time, then it can sleep until the time arrives.

At the appointed time, we’ll update our current time in the current_time variable. We’ll call the
callback function provided in the Task object. Once that’s finished, then we’ll see if the Task object’s

repeat () method will provide another repeat task in the queue.

The important things to note here are the lines that touch callback functions. The function is passed
around like any other object and the Scheduler and Task classes never know or care what the
original name of the function is or where it was defined. When it’s time to call the function, the

Scheduler simply evaluates the function with new_task.callback(current_time).

Here’s a set of callback functions that test the Scheduler class:
import datetime
def format_time(message: str) -> None:

now = datetime.datetime.now()
print(f"{now:%I:%M:%S}: {message}")

def one(timer: float) -> None:
format_time("Called One")

def two(timer: float) -> None:
format_time("Called Two")

Chapter 9 273

def three(timer: float) -> None:
format_time("Called Three")

class Repeater:
def _ _init_ (self) -> None:
self.count = 0

def four(self, timer: float) -> None:
self.count += 1
format_time(f"Called Four: {self.count}")

These functions all meet the definition of the Callback type hint, so they’ll work nicely. The
Repeater class definition has a method, four (), that meets the definition. That means an instance

of Repeater can also be used.

We’ve defined a handy utility function, format_time(), to write common messages. It uses the
format string syntax to add the current time to the message. The three small callback functions

output the current time and a short message telling us which of the callbacks has been fired.

Here’s an example of creating a scheduler and loading it up with callback functions:

__main__":
= Scheduler(
.enter(1, one

if _ _name__ ==

)
)
)
)

s
s

s.entexr(2, one
s.enter(2, two
s.entexr(4, two)
s.entexr(3, three)
s.enter (6, three)

repeater = Repeater()
s.enter(5, repeater.four, delay=1, limit=5)

This example allows us to see how multiple callbacks interact with the timer.

The Repeater class demonstrates that methods can be used as callbacks too, since they are really
functions that happen to be bound to an object. Using a method of an instance of the Repeater

class is a function like any other.

The output shows that events are run in the expected order:

274 The Intersection of Object-Oriented and Functional Programming

: Called One

: Called Two

: Called One

: Called Three

: Called Two

: Called Four: 1

: Called Three
: Called Four:
: Called Four:
: Called Four:
: Called Four:

Note that some events have the same scheduled runtime. Scheduled after 2 seconds, for example,
both callback functions one() and two() are defined. They both ran at 01:44:36. There’s no rule
to decide how to resolve the tie between these two functions. The scheduler’s algorithm is to pop
an item from the heap queue, execute the callback function, then pop another item from the heap
queue; if it has the same execution time, then evaluate the next callback function. Which of the
two callbacks is performed first and which is done second is an implementation detail of the heap
queue. If order matters to your application, you’ll need an additional attribute to distinguish among

items scheduled at the same time; a priority number is often used for this.

Because Python is a dynamic language, the contents of a class are not fixed. There are some more
advanced programming techniques available to us. In the next section, we’ll look at changing the

methods of a class.

Using functions to patch a class

One of the things we noted in the previous example was that tools like mypy assume the Callable
attribute, callback, was a method of the Task class. This leads to a potentially confusing mypy er-
ror message, Invalid self argument “Task” to attribute function “callback” with type
“Callable[[int], Nonel”. In the previous example, the callable attribute was emphatically not a

method.

The presence of the confusion means that a callable attribute can be treated as a method of a class.
Since we can generally supply extra methods to a class, it means we can patch in additional methods

at runtime.

Does it mean we should do this? It’s perhaps a bad idea, except in a very special situation.

Chapter 9 275

It is possible to add or change a function to an instantiated object, demonstrated as follows. First

we’ll define a class, A, with a method, show_something():
class A:

def show_something(self) -> None:
print("My class is A")

Here’s how it looks when we create an instance of this class and execute a method:

>>> a_object = A()

>>> 3_object.show_something()
My class is A

This looks like what we’d expect. We invoke the method on an instance of the class and see
the results of the print() function. Now, let’s patch this object, replacing the show_something()
method:

def patched_show_something() -> None:
print("My class is NOT A")

Here’s what it looks like when we patch an object to be able to use this function:

>>> a_object = A()
>>> a_object.show_something = patched_show_something

>>> a_object.show_something()
My class is NOT A

We’ve patched the a_object object by introducing an attribute value that’s a callable function.
When we use a_object.show_something(), the rule is to look in local attributes first, then look in
class attributes. Because of this, we’ve used a callable attribute to create a localized patch to this

instance of the A class.

We can create another instance of the class, unpatched, and see that it’s still using the class-level

method:

>>> b_object = A()

>>> b_object.show_something()
My class is A

276 The Intersection of Object-Oriented and Functional Programming

If we can patch an object, you’d think we can also patch the class. We can. It is possible to replace
methods on classes as well as replacing methods in objects. If we change the class, we have to

account for the self argument that will be implicitly provided to methods defined in the class.

It’s very important to note that patching a class will change the method for all instances of that
object, even ones that have already been instantiated. Obviously, replacing methods like this can be
both dangerous and confusing to maintain. Somebody reading the code will see that a method has
been called and look up that method on the original class. But the method on the original class is
not the one that was called. Figuring out what really happened can become a tricky, frustrating

debugging session.

There’s a cardinal assumption that needs to underpin everything we write. It’s a kind of contract

that is essential to understanding how software works:

The code people see in a module file must be the code that is running.

N\ ! 7/
',@\' Patching code outside the class statement is perfectly awful. With one exception

— unit testing.

Breaking this assumption by patching classes or objects will really confuse people. Our previous
example showed an instance of class A that had a method named show_something() with behavior
clearly different to the definition for class A. That’s going to be lead people to distrust your application

software.

This technique does have its uses though. Often, replacing or adding methods at runtime (called
monkey patching) is used in unit testing. If testing a client-server application, we may not want
to actually connect to the server while testing the client; this may result in accidental transfers of

funds or embarrassing test emails being sent to real people.

Instead, we can set up our test code to replace some of the key methods on the object that sends
requests to the server so that it only records that the methods have been called. We’ll cover this in
detail in Chapter 13. Outside the narrow realm of testing, monkey patching is generally a sign of

bad design.

In the case of our class in this example, a subclass of A with a distinct implementation of the

show_something() method would make things much more clear than a patched method.

We can use class definitions to create objects that are usable as if they were functions. This gives us

another path toward using small, separate functions to build applications.

Chapter 9 277

While Python lets us build classes dynamically, we don’t encourage its use in general. These kinds

of patches are appropriate for unit testing.

A much more useful technique is creating a callable object. This lets us define functions that are

configurable at runtime.

Callable objects

Just as functions are objects that can have attributes set on them, it is possible to create an object
that can be called as though it were a function. Any object can be made callable by giving it a
__call_ () method. This method accepts the parameters for the function call and returns the value.
Let’s make our Repeater class, from the timer example, a little easier to use by making it a callable,

as follows:

class Repeater_2:
def _ _init_ (self) -> None:
self.count = 0@

def _ _call_ (self, timer: float) -> None:
self.count += 1
format_time(f"Called Four: {self.count}")

This example isn’t much different from the earlier class; all we did was change the name of the
repeater function to __call__ () and pass the object itself as a callable. How does this work? We

can do the following interactively to create an example callable object:
>>> rpt2 = Repeater_2()
At this point, we’ve created a callable object, rpt2(). When we evaluate something like rpt2(1),

Python will evaluate rpt2.__call__ (1) for us because there’s a __call__ () method defined for
the object’s class. It looks like this:

>>> from unittest.mock import Mock, patch
>>> expected_date = datetime.datetime(2019, 10, 26, 11, 12, 13)

>>> mock_method = Mock(return_value=expected_date)

278 The Intersection of Object-Oriented and Functional Programming

>>> 1pt2 = Repeater_2()

>>> with patch('datetime.datetime', now=mock_method) :
rpt2(42)
rpt2(43)
rpt2(44)

11:12:13: Called Four: 1
11:12:13: Called Four: 2
11:12:13: Called Four: 3

As a teaser for Chapter 13, we’ve included a little of the test technology in this example. Each of
the callback functions uses a format_time function to provide a timestamp along with a message.
We’ve patched the datetime.datetime class so the now() method will return a known date-time
object. This makes it easy to write a doctest example, because the time that’s returned is always the

expected date and time.

Each call to the rpt2 object works as if it were a call to a function. Plus, as a bonus, the callable

object increments a counter that’s entirely encapsulated by the class definition.

Here’s an example of using this variation on the Repeater_2 class definition with a Scheduler

object:

s2 = Scheduler()
s2.enter(5, Repeater_2(), delay=1, limit=5)
s2.run()

Note that, when we make the enter() call, we pass as an argument the Repeater_2() object. Those
two parentheses create a new instance of the class. The instance that is created has the __call__ ()
method, which can be used by the Scheduler instance. When working with callable objects, it’s

essential to create an instance of a class; it’s the object that’s callable, not the class.
At this point, we’ve seen two different kinds of callable objects:
1. Python’s functions, built with the def statement.
2. Callable objects. These are instances of a class with the __call__ () method defined.

Generally, the simple def statement is all we need. Callable objects, however, can do something
an ordinary function can’t do. Our Repeater_2 class counts the number of times it was used. An
ordinary function is stateless. A callable object can be stateful. This needs to be used with some

care, but some algorithms can have a dramatic performance improvement from saving results in a

Chapter 9 279

cache, and a callable object is a great way to save results from a function so they don’t need to be

recomputed.

Recall

We’ve touched on a number of ways that object-oriented and functional programming techniques

are part of Python:

« Python built-in functions provide access to special methods that can be implemented by
a wide variety of classes. Almost all classes, most of them utterly unrelated, provide an
implementation for __str__() and __repr__() methods, which can be used by the built-in
str() and repr () functions. There are many functions like this where a function is provided

to access implementations that cut across class boundaries.

« Some object-oriented languages rely on “method overloading” — a single name can have
multiple implementations with different combinations of parameters. Python provides an
alternative, where one method name can have optional, mandatory, position-only, and

keyword-only parameters. This provides tremendous flexibility.

« Functions are objects and can be used in ways that other objects are used. We can provide

them as argument values; we can return them from functions. A function has attributes, also.

Exercises

You’ve probably used many of the basic built-in functions before now. We covered several of them,
but didn’t go into a great deal of detail. Play with enumerate, zip, reversed, any, and all until
you know you’ll remember to use them when they are the right tool for the job. The enumerate

function is especially important because not using it results in some pretty ugly while statements.

Also explore some applications that pass functions around as callable objects, as well as using the
__call__ () method to make your own objects callable. You can get the same effect by attaching
attributes to functions or by creating a __call__() method on an object. In which case would you

use one syntax, and when would it be more suitable to use the other?

The relationship between arguments, keyword arguments, variable arguments, and variable keyword
arguments can be a bit confusing. We saw how painfully they can interact when we covered multiple
inheritance. Devise some other examples to see how they can work well together, as well as to

understand when they don’t.

280 The Intersection of Object-Oriented and Functional Programming

The Options example for using **kwargs has a potential problem. The update() method inherited
from the dict class will add or replace keys. What if we only want to replace key values? We’d
have to write our own version of update() that will update existing keys and raise a ValueErroxr

exception when a new key is provided.

The name_or_numbexr() function example has a blatant bug. It is not completely correct. For a
number 15, it will not report both “fizz” and “buzz”. Fix the name_oxr_number () function to collect

all the names of all the true functions. A good exercise.

The name_or_number () function example has two test functions, fizz(), and buzz (). We need an
additional function, bazz(), to be true for multiples of seven. Write the function and be sure it

works with the name_or_number () function. Be sure that the number 105 is handled correctly.

It’s helpful to review the previous case studies and combine them into a more complete application.
The chapter case studies tend to focus on details, avoiding the overall integration of a more complete
application. We’ve left the integration as work for you to allow you to dig more deeply into the

design.

Summary

We covered a grab bag of topics in this chapter. Each represented an important non-object-oriented
feature that is popular in Python. Just because we can use object-oriented principles does not

always mean we should!

However, we also saw that Python typically implements such features by providing a syntax shortcut
to traditional object-oriented syntax. Knowing the object-oriented principles underlying these tools

allows us to use them more effectively in our own classes.

We discussed a series of built-in functions. There are a whole bunch of different syntaxes available
to us when calling functions with arguments, keyword arguments, and variable argument lists.
Context managers are useful for the common pattern of sandwiching a piece of code between two

method calls. Even functions are objects, and, conversely, any normal object can be made callable.

In the next chapter, we’ll look at a design pattern that is so fundamental to Python programming

that it has been given special syntax support: the iterator pattern.

Chapter 9 281

Join our community Discord space

Join our Python Discord workspace to discuss and know more about the book: https://packt.1i

nk/dHrHU

=] T [u]

https://packt.link/dHrHU
https://packt.link/dHrHU

10

The Iterator Pattern

We've discussed how many of Python’s built-ins and idioms seem, at first blush, to fly in the face of
object-oriented principles, but are actually providing access to the objects with a functional syntax.
In this chapter, we’ll discuss how the for statement is actually a lightweight wrapper around a
set of object-oriented design patterns. We’ll also see a variety of extensions to this syntax that

automatically create even more types of object. We will cover the following topics:
« What design patterns are
« The iterator protocol — one of the most powerful design patterns
« List, set, and dictionary comprehensions
+ Generator functions, and how they build on other patterns

We'll start with an overview of what design patterns are and why they’re so important.

Design patterns in brief

When engineers and architects decide to build a bridge, a tower, or a building, they follow certain
principles to ensure structural integrity. There are various possible designs for bridges (suspension
and cantilever, for example), but if the engineer doesn’t use one of the standard designs, and doesn’t

have a brilliant new design, it is likely the bridge they design will collapse.

284 The Iterator Pattern

Design patterns are an attempt to apply this same formal definition for correctly designed structures
to software engineering. There are many different design patterns for solving different general
problems. Design patterns are applied to solve a common problem faced by developers in some
specific situation. What’s central to a pattern is that it is reused. This means it may be used in
a unique context perhaps not obvious from the way the pattern is often described. One clever
solution is a good idea. Two similar solutions might be a coincidence. Three or more reuses of an

idea and it starts to look like a repeating pattern.

Knowing common object-oriented design patterns and choosing to use them in our software does
not, however, guarantee that we are creating a correct solution. In 1907, the Québec Bridge (to
this day the longest cantilever bridge in the world, just short of a kilometer long) collapsed before
construction was completed, because the engineers who designed it grossly underestimated the
weight of the steel used to construct it. Similarly, in software development, we may incorrectly
choose or apply a design pattern, and create software that collapses under normal operating situations

or when stressed beyond its original design limits.

Any one design pattern proposes a set of objects interacting in a specific way to solve a general
problem. The job of the programmer is to recognize when they are facing a specific version of such

a problem, then to choose and adapt the general pattern to their precise needs.

In this chapter, we’ll look deeply at the iterator design pattern. This pattern is so powerful and
pervasive that the Python developers have provided multiple syntaxes to access the object-oriented
principles underlying the pattern. We will be covering other design patterns in the next two chapters.
Some of them have language support and some don’t, but none of them seem to be so intrinsically

a part of the Python coder’s daily life as the iterator pattern.

Iterators

We can think of an iterator as an object with a next () method and a done () method; the latter
returns True if there are no items left in the sequence. In a programming language without built-in

support for iterators, the iterator would be used like this:

iterator = some_collection.iterator()
while not iterator.done():
item = iterator.next()
do something with the item from some_collection...

Chapter 10 285

This example omits the class for some_collection, which needs to implement an iterator()
method to return a stateful object to iterate through items in the collection. It also omits the class
for an iterator, which is initialized with the value of some_collection and then handles the next ()

and done () methods to return each item.

In Python, iteration is available across many language features, so the method of an iterator to return
the next item gets a special name, __next__. This method can be accessed using the next (iterator)
built-in function. Rather than a done () method, Python’s iterator protocol raises the StopIteration
exception to notify the client that the iterator has completed and there is no more data. Finally,
we have the much more readable for item in iterator: syntax to actually access items in an
iterator instead of messing around with a while statement, and the explicit creation of the iterator

instance. Let’s look at each these features in more detail.

The iterator protocol

The Iterator abstract base class, in the collections.abc module, defines the protocol for iteration.

Any iterator must offer the __next__() method to provide the next item in a collection.

Additionally, any Collection class definition must be Iterable. To be Iterable, the protocol
needs to provide an __iter__ () method; this method creates an Iterator object for the items in

the collection.

Container
[Scontains=0)
- \m - list
S Sequence p
<t _contains__() <+—— index(= :gtpeenndoo
|_len_0 _;Lenr_(()) count() pop()
/ —_—— . |remove(|
lterable | I
Iterator
iter(O [~
T TN deates 5 pext_(

Figure 10.1: The abstractions for Iterable

As mentioned, an Iterator class must define a __next__() method. The for statement (and other

features that support iteration) use this to get each element from the sequence. In addition, every

286 The Iterator Pattern

Iterator class must also fulfill the Iterable interface. This means an Iterator will also provide

an __iter_ () method and return itself as the result.

This might sound a bit confusing, so have a look at the following example. Note that this is a very
verbose way to solve this problem. It’s not optimal; it’s exploratory. It demonstrates the details of
iteration and the two protocols in question. Later in this chapter, we’ll look at several more readable

ways to get this effect:

from typing import Iterable, Iterator

class Capitallterable(Iterable[str]):
def __init_ (self, string: str) -> None:
self.string = string

def _ _iter_ (self) -> Iterator([str]:
return Capitallterator(self.string)

class CapitalIterator(Iterator[str]):
def __init__ (self, string: str) -> None:
self.words = [w.capitalize() for w in string.split()]
self.index = 0

def _ next_ (self) -> str:
if self.index == len(self.words):
raise StopIteration()

word = self.words[self.index]
self.index += 1
return word

This example of the iterator protocol defines a CapitalIterable class whose job is to loop over
each of the words in a string and output them with the first letter capitalized. We formalized this
by using the Iterable[str] type hint as a superclass to make it clear what our intention is. Most
of the work of this iterable class is delegated to the CapitalIlterator implementation. One way to

interact with this iterator is as follows:

>>> jterable = Capitallterable('the quick brown fox jumps over the lazy

dog')

Chapter 10 287

>>> jterator = iter(iterable)
>>> while True:
try:
print(next(iterator))
except StopIteration:
break

This example first constructs an iterable, assigning it to a variable with the boringly obvious name of
iterable. It then retrieves a Capitallterator instance from the iterable object. The distinction
may need explanation; the iterable object is a collection of elements that can be iterated over. The
iterator object, on the other hand, represents a specific state during the process of visiting the
items in an iterable; some of the items have been consumed and some have not. For a collection
that’s a sequence, the state is often an index value that gets incremented. Two different iterator
objects might be at different places in the list of words, but each iterator has it’s own private state

and can mark only one place.

Each time next() is called on the iterator, it does two things: it updates its internal state to point
to the next item, and it also returns another item from the iterable, in order. The state change for
visiting items is entirely encapsulated in the iterator. Eventually, the iterator will be exhausted (won’t
have any more elements to return from the iterable), in which case a StopIteration exception is

raised. This is generally used to exit from any containing while or for statement.

Python has a simpler syntax for constructing an iterator from an iterable:

>>> for i in iterable:
print (i)

288 The Iterator Pattern

As you can see, the for statement, in spite of not looking remotely object-oriented, is actually a
shortcut to some fundamentally object-oriented design principles. Keep this in mind as we discuss
comprehensions, as they, too, appear to be the polar opposite of an object-oriented tool. Yet, they

use the same iteration protocol as for statements and are another kind of shortcut.

The number of iterable collections in Python is large. We're not surprised when strings, tuples,
and lists are iterable. A set, clearly, must be iterable, even if the order of elements may be difficult
to predict. A mapping will iterate over the keys by default; other iterators are available. A file
iterates over the available lines. A regular expression has a method, finditer(), that is an iterator
over each instance of a matching substring that it can find. The Path.glob() and Path.walk()
methods will iterate over items in a directory. The range() object is also an iterator. You get the

idea: anything even vaguely collection-like will support some kind of iterator.

Comprehensions

Comprehensions offer simple, but powerful, syntax, allowing us to transform or filter an iterable
object in as little as one line of code. The resultant object can be a perfectly normal list, set, or
dictionary, or it can be a generator expression that can be efficiently consumed while keeping just

one element in memory at a time.

List comprehensions

List comprehensions are one of the most powerful tools in Python, so people tend to think of
them as advanced. They’re not. Indeed, we’'ve taken the liberty of littering previous examples
with comprehensions, assuming you would understand them. A comprehension is fundamental to

Python; it can handle many of the most common operations in application software.

Let’s have a look at one of those common operations: namely, converting a list of items into a list of
derived items. Specifically, let’s assume we just read a list of strings from a file, and now we want to

convert it into a list of integers. We know that every item in the list is an integer, and we want to do

Chapter 10 289

some activity (say, calculate an average) on those numbers. Here’s one simple way to approach it:

>5> input_StIingS = ["1", ||5||' "28", 11131", ||3||]

>>> output_integers = []
>>> for num in input_strings:
output_integers.append(int(num))

This works fine and it’s only three lines of code. If you aren’t used to comprehensions, you may not

even think that it looks ugly! Now, look at the same code using a list comprehension:

>>> output_integers = [int(num) for num in input_strings]

We’re down to one line and, importantly for performance, we’ve dropped an append method call
for each item in the list. Overall, it’s pretty easy to tell what’s going on, even if you’re not used to

comprehension syntax.

The square brackets indicate, as always, that we’re creating a list. Inside this list is a for clause that
iterates over each item in the input sequence, assigning each item to the num variable. The only
thing that may be confusing is what’s happening between the list’s opening brace and the start of
the for statement. Whatever expression is provided here is applied to each of the items in the input
list. The item in question is referenced by the num variable from the for clause. So, this expression

applies the int function to each element. The collected result forms a new list.

Terminology-wise, we call this a mapping. We are applying the result expression, int (num) in this

example, to map values from the source iterable to create a resulting iterable list.

That’s all there is to a basic list comprehension. Comprehensions are highly optimized, making
them faster than for statements when processing a large number of items. When used wisely,

they’re also more readable. These are two compelling reasons to use them widely.

Converting one list of items into a related list isn’t the only thing we can do with a list comprehension.
We can also choose to exclude certain values by adding an if statement inside the comprehension.

We call this a filter. Have a look:

>>> output_integers = [int(num) for num in input_strings if len(num) < 3]

>>> output_integers
[1, 5, 28, 3]

290 The Iterator Pattern

The essential difference between this example and the previous one is the if len(num) < 3 clause.
This extra code excludes any strings with more than two characters. The if clause is applied to
each element before the final int () function, so it’s testing the length of a string. Since our input

strings are all integers at heart, it excludes any number over 99.

A list comprehension can be used to map input values to output values, applying a filter along
the way to include or exclude any values that meet a specific condition. A great many algorithms

involve mapping and filtering operations.

Any iterable can be the input to a list comprehension. In other words, anything we can wrap in a

for statement can also be used as the source for a comprehension.

For example, text files are iterable; each call to __next__() on the file’s iterator will return one line
of the file. We can examine the lines of a text file by naming the open file in the for clause of a list
comprehension. We can then use the if clause to extract interesting lines of text. This example

finds a subset of lines in a test file:

>>> from pathlib import Path

>>> source_path = Path('sxc') / 'iterator_protocol.py'

>>> with source_path.open() as source:
examples = [line.rstrip()
for line in souxrce
if ">>>" in line]

In this example, we’ve added some whitespace to make the comprehension more readable (list
comprehensions don’t have to fit on one physical line even though they’re one logical line). This
example creates a list of lines that have the »> prompt in them. The presence of “»>" suggests
there might be a doctest example in this file. Each line has rstrip() applied to remove trailing
whitespace, like the n that ends each line of text returned by the iterator. The resulting list object,
examples, suggests some of the test cases that can be found within the code. (This isn’t as clever as

doctest’s own parser.)

Let’s extend this example to capture the line numbers for each example with a »> prompt in it. This
is a common requirement, and the built-in enumerate() function helps us pair a number with each

item provided by the iterator:

Chapter 10 291

>>> source_path = Path('sxc') / 'iterator_protocol.py'
>>> with source_path.open() as source:

examples = [(number, line.rstrip())
for number, line in enumerate(source, start=1)
if ">>>" in line]

The enumerate() function consumes an iterable, providing an iterable sequence of two-tuples of a
number and the original item. If the line passes our “»>" in line test, we’ll create a two-tuple of the
number and the cleaned-up text. We've done some sophisticated processing in—effectively—one line
of code. Essentially, though, it’s a filter and a mapping. First, it extracts lines from the source, then
it filters the lines that match the given if clause, then it evaluates the (number, line.rstrip())
expression to create resulting tuples. The result is collected into a list object. The ubiquity of this

iterate-filter-map-collect pattern drives the idea behind a list comprehension.

Set and dictionary comprehensions

Comprehensions aren’t restricted to lists. We can use a similar syntax with braces ({}) to create sets
and dictionaries as well. Let’s start with sets. One way to create a set is to wrap a list comprehension
in the set () constructor, which converts it to a set. But why waste memory on an intermediate list

that gets discarded when we can create a set directly?

Here’s an example that uses a named tuple to model author/title/genre triples, and then retrieves a

set of all the authors that write in a specific genre:

from typing import NamedTuple

class Book(NamedTuple):
author: str
title: str
genre: str

%>>> from typing import NamedTuple
%>>> class Book(NamedTuple):
%. .. author: str

%. .. title: str
%. .. genre: str
>>> books =

292 The Iterator Pattern

Book("Pratchett", "Nightwatch", "fantasy"),
Book("Pratchett", "Thief Of Time", "fantasy"),
Book("Le Guin", "The Dispossessed", "scifi"),
Book("Le Guin", "A Wizard Of Earthsea", "fantasy"),

Book("Jemisin", "The Broken Earth", "fantasy"),
Book("Turner", "The Thief", "fantasy"),

Book("Phillips", "Preston Diamond", "western"),
Book ("Phillips", "Twice Upon A Time", "scifi"),

We’ve defined a small library of instances of the Book class. We can create a set from each of these
objects by using a set comprehension. It looks a lot like a list comprehension, but uses instead of

[1:

>>> fantasy_authors = {b.author for b in books if b.genre == "fantasy"}

The comprehensions!set comprehensionshighlighted set comprehension sure is compact. If we
were to use a list comprehension, of course, Terry Pratchett would have been listed twice. As it is,

the nature of sets removes the duplicates, and we end up with the following:

{'Jemisin', 'Le Guin', 'Pratchett', 'Turner'}

Note that sets don’t have a defined ordering, so your output may differ from this example. For
testing purposes, it helps to set the PYTHONHASHSEED environment variable to a fixed value to impose

a predictable order. This introduces a tiny security vulnerability, so it’s only suitable for testing.

Still using braces, we can introduce a colon to make key: value pairs required to create a dictionary
comprehension. For example, it may be useful to quickly look up the author or genre in a dictionary

if we know the title. We can use a dictionary comprehension to map titles to books objects:

>>> fantasy_titles = {b.title: b for b in books if b.genre == "fantasy"}

Now, we have a dictionary, and can look up books by title using the normal syntax,
fantasy_titles[’Nightwatch’]. We've created a high-performance index from a lower-performance

sequence.

In summary, comprehensions are comprehensions!set comprehensionsnot advanced Python, nor

Chapter 10 293

are they features that subvert object-oriented programming. They are a more concise syntax for

creating a list, set, or dictionary from an existing iterable source of data.

Generator expressions

Sometimes we want to process a new sequence without building a new list, set, or dictionary into
system memory. We might be iterating over items one at a time, and don’t actually care about
having a complete container (such as a list or dictionary) created. Processing one item at a time
means we only need the current object available in memory at any one moment. But when we
create a container, all the objects have to be stored in that container before we start processing

them.

For example, consider a program that processes log files. A very simple log might contain informa-

tion in this format:

Apr @5, 2021 2@:03:29 DEBUG This is a debugging message.

Apr @5, 2021 2@:03:41 INFO This is an information method.

Apr @05, 2021 2@:03:53 WARNING This is a warning. It could be serious.

Apr @05, 2021 20:03:59 WARNING Another warning sent.

Apr @05, 2021 20:04:05 INFO Here's some information.

Apr @05, 2021 20:04:17 DEBUG Debug messages are only useful if you want to
figure something out.

Apr @5, 2021 20:04:29 INFO Information is usually harmless, but helpful.
Apr @5, 2021 20@:04:35 WARNING Warnings should be heeded.

Apr @05, 2021 20@:04:41 WARNING Watch for warnings.

Log files for popular web servers, databases, or email servers can contain many gigabytes of data
(one of the authors once had to clean nearly two terabytes of logs off a misbehaving system). If
we want to process each line in the log, we can’t use a list comprehension; it would create a list
containing every line in the file. This probably wouldn’t fit in RAM and could bring the computer

to its knees, depending on the operating system.

If we used a for statement on the log file, we could process one line at a time before reading the
next one into memory. Wouldn'’t it be nice if we could use comprehension syntax to get the same

effect?

This is where generator expressions come in. They use the same syntax as comprehensions, but
they don’t create a final container object. We call them lazy: they reluctantly produce values on

demand. To create a generator expression, wrap the comprehension in () instead of [] or.

294 The Iterator Pattern

The following code extracts a subset of lines from a log file in the previously presented format. It
will use a generator expression to define the filter; it outputs a new log file that contains only the

WARNING lines:

>>> from pathlib import Path
>>> full_log_path = Path.cwd() / "data" / "sample.log"
>>> warning_log_path = Path.cwd() / "data" / "warnings.tab"

>>> with open(full_log_path) as source:
warning_lines = (line for line in source if "WARN" in line)

with open(warning_log_path, 'w') as target:
for line in warning_lines:
target.write(line)

We've opened the sample.log file, a file perhaps too large to fit in memory. A generator expression
will filter out the warnings (in this case, it uses the if syntax and leaves the line unmodified). This
is lazy, and doesn’t really do anything until we consume its output. We can open another file into
which to write a subset of log lines. The final for statement consumes each individual line from the
warning_lines generator. At no time is the full log file read into memory; the processing happens

one line at a time.

If we run it on our sample file, the resulting warnings.log file looks like this:

Apr @05, 2021 20@:03:53 WARNING This is a warning. It could be serious.
Apr 05, 2021 20:03:59 WARNING Another warning sent.

Apr @05, 2021 20:04:35 WARNING Warnings should be heeded.

Apr 05, 2021 20:04:41 WARNING Watch for warnings.

Of course, with a short input file, we could have safely used a list comprehension, doing all the
processing in memory. When the file is millions of lines long, the generator expression will have a

huge impact on both memory and speed.

The core of a comprehension is the generator expression. Wrapping a generator in [] creates a list.
Wrapping a generator in creates a set. Using and : to separate keys and values creates a dictionary.
Wrapping a generator in () is still a generator expression, not a tuple. To make a tuple, we must
explicitly use the tuple() function. (We can also use the 1ist(), dict(), and set() functions to

make the comprehension’s result clearer.)

Generator expressions are frequently most useful inside function calls. For example, we can call

Chapter 10 295

sum, min, or max on a generator expression instead of a list, since these functions process one object

at a time. We're only interested in the aggregate result, not any intermediate container.

In general, of the four options, a generator expression should be used whenever possible. If we
don’t actually need a list, set, or dictionary, but simply need to filter or apply a mapping to items in
a sequence, a generator expression will be most efficient. If we need to know the length of a list,
or sort the result, remove duplicates, or create a dictionary, we’ll have to use the comprehension

syntax and create a collection.

Generator functions have a small limitation: they’re expressions. If we want to make use of
statements such as try or match, we’d really like to write an entire function that will behave like a

generator expression.

Generator functions

Generator functions embody the essential features of a generator expression, which is the general-
ization of a comprehension. The generator function syntax looks even less object-oriented than
anything we’ve seen, but we’ll discover that once again, it is a syntax shortcut to create a kind of

iterator object. It helps us build processing following the standard iterator-filter-mapping pattern.

Let’s take the log file example a little further. If we want to decompose the log into columns, we’ll
have to do a more significant transformation as part of the mapping step. This will involve a regular
expression to find the timestamp, the severity word, and the message as a whole. We’ll look at a
number of solutions to this problem to show how generators and generator functions can be applied

to create the objects we want.

Here’s another version of a log file parser. This extracts a CSV-formatted file for further analysis. It

also avoids generator expressions entirely, making it a bit more deeply nested:

import csv

import re

from pathlib import Path

from typing import Match, cast

def extract_and_parse_1(source_log_path: Path, warning_tab_path: Path) ->
None:
with warning_tab_path.open("w", newline="") as target:
writer = csv.writer(target, delimiter="\t")

296 The Iterator Pattern

pattern = re.compile(xr" (\w\w\w \d\d, \d\d\d\d \d\d:\d\d:\d\d) (\w+)
(.*)"
with source_log_path.open() as source:
for line in source:
if line_match := pattern.match(line):
line_groups = line_match.groups()
if "WARN" in line_groups[1]:
writer.writerow(line_groups)

We’ve defined a regular expression to match three groups:

« The complex date string expression, (\w\w\w \d\d, \d\d\d\d \d\d:\d\d:\d\d), is a gen-
eralization of strings such as “Apr @5, 2021 20:04:41". Some folks prefer
(\w{3} \d{2}, \d{4} \d{2}:\d{2}:\d{2}), which saves counting the pattern elements.

« The severity level expression, (\w+), matches a run of letters, digits, or underscores. This

will match words such as INFO and DEBUG.
« An optional message expression, (.*), will collect all characters to the end of the line.
This pattern is assigned to the pattern variable.

The decomposition of the line into groups involves two steps. First, we apply pattern.match() to
the line of text to create a Match object. Then, we interrogate the Match object for the sequence of

groups that matched.

This deeply nested function seems maintainable, but writing so many levels of indent in so few
lines is a potential problem. The deeply nested code means a shift in focus from file processing to
line processing to pattern matching and from there to processing the matches. More alarmingly, if
there is some irregularity in the file, and we want to handle the case where pattern.match(line)
returns None, the if statement doesn’t do anything. Error handling may lead to even deeper levels
of nesting. Deeply nested conditional processing leads to statements where the conditions under

which those statements are executed can be obscure, muddled by shifting contexts.

The reader of this code has to mentally integrate all of the preceding if statements to work out the

condition under which processing happens. This can be a problem with this kind of design.

Now let’s consider a more object-oriented solution, without any shortcuts. We’ll break this into

two parts: the initial class definition for the iterator, followed by a function to use the iterator:

Chapter 10 297

import csv

import re

from pathlib import Path

from typing import Match, cast, Iterator, TextIO

class WarningReformat(Iterator[tuple[str, ...]1]):
pattern = re.compile(xr" (\w\w\w \d\d, \d\d\d\d \d\d:\d\d:\d\d) (\w+)
(.*)")

def __init_ (self, source: TextIO) -> None:
self.insequence = source

def _ iter_ (self) -> Iterator[tuple[str, ...]11:
return self

def __next__(self) -> tuple[str, ...]:
line = self.insequence.readline()
while line:
if match := self.pattern.match(line):
groups = match.groups()
if "WARN" in groups[1]:
return groups
line = self.insequence.readline()
raise StopIteration

def extract_and_parse_2(full_log_path: Path, warning_log_path: Path) ->
None:

with warning_log_path.open("w", newline="") as target:
writer = csv.writer(target, delimiter="\t")
with full_log_path.open() as source:
filter_reformat = WarningReformat(source)
for line_groups in filter_reformat:
writer.writerow(line_groups)

We’ve defined a formal WarningReformat iterator that emits the three-tuple of the date, warning,
and message. We've used a type hint of tuple[str, ...] because it matches the output from the
self.pattern.match(line).groups() expression: it’s a sequence of strings, with no constraint on
how many will be present. The iterator is initialized with a TextI0 object, something file-like that

has a readline () method.

298 The Iterator Pattern

This __next__() method reads lines from the file, discarding any lines that are not WARNING lines.

When we encounter a WARNING line, we parse it and return the three-tuple of strings.

The extract_and_parse_2() function uses an instance of the WarningReformat class in a for
statement. This will evaluate the __next__() method repeatedly to process each subsequent
WARNING line. When the source iterator runs out of lines, the WarningReformat class raises a
StopIteration exception to tell the collaborating for statement that there’s no more data. This
is distinct from previous generators where the generator function does this implicitly. When
implementing the __next__() method, the exception must be raised explicitly. It’s pretty ugly
compared to the other examples, but it’s also powerful; now that we have a class in our hands, we

can do whatever we want with it.

With that background behind us, we finally get to see true generators in action. This next example
does exactly the same thing as the previous one: it creates an object with a __next__() method

that raises StopIteration when it’s out of inputs:

import csv

import re

from pathlib import Path

from typing import Match, cast, Iterator, Iterable

def warnings_filter(source: Iterable[str]) -> Iterator[tuple[str, ...]1]:
pattern = re.compile(xr" (\w\w\w \d\d, \d\d\d\d \d\d:\d\d:\d\d) (\w+)
.*)")
for line in source:
if "WARN" in line:
yield tuple(cast(Match[str], pattern.match(line)).groups())

def extract_and_parse_3(full_log_path: Path, warning_log_path: Path) ->
None:
with warning_log_path.open("w", newline="") as target:
writer = csv.writer(target, delimiter="\t")
with full_log_path.open() as infile:
filter = warnings_filter(infile)
for line_groups in filter:
writer.writerow(line_groups)

The yield statement in the warning_filters() function is the key to generators. When Python

sees yield in a function, it takes that function and wraps it up in an object that follows the Iterator

Chapter 10 299

protocol, not unlike the class defined in our previous example. Think of the yield statement as
similar to the return statement; it returns a line. Unlike return, however, the function is only
suspended. When it is called again (via next()), it will start where it left off — on the line after the
yield statement — instead of at the beginning of the function. In this example, there is no line after
the yield statement, so it jumps to the next iteration of the containing for statement. Since the

yield statement is inside an if statement, it only yields lines that contain WARNING.

While it looks like this is nothing more than a function looping over the lines, it is actually creating

a special type of object, a generator object:

>>> print(warnings_filtex([]))

<generator object warnings_filter at @xb728c6bc>

What this function does is create and return a generator object. In this example, an empty list was
provided, and a generator was built. The generator object has __iter_ () and __next__() methods
on it, just like the one we created from a class definition in the previous example. (Using the
dir() built-in function on it will reveal what else is part of a generator.) Whenever the __next__()
method is called, the generator runs the function until it reaches a yield statement. It then
suspends execution, retaining the current state and returning the value from yield. The next time

the __next__() method is called, it restores the state and picks up execution where it left off.

This generator function is nearly identical to this generator expression:

warnings_filter = (
tuple(cast(Match[str], pattern.match(line)).groups())
for line in source
if "WARN" in line

warnings_filter = (
tuple(cast(Match[str], pattern.match(line)).groups())
for line in source
if "WARN" in line

We can see how these various patterns align. The generator expression has all the elements of the

statements, slightly compressed, and in a different order:

300 The Iterator Pattern

function expression
for line in source: € —— = — == > tuple(...)
if "WARN" in line: for line in source
yield tuple(...) if "WARN" in line

Figure 10.2: Generator functions compared with generator expressions

A comprehension, then, is a generator wrapped in [] or to create a concrete object. In some cases,
it can make sense to use list(), set(), or dict() as a wrapper around a generator. This is helpful
when we’re considering replacing a generic collection with a customized collection of our own.
Changing 1ist () into MySpecialContainer() seems like a slightly lower risk than changing [] to

a class name.

The generator expression has the advantage of being short and appearing right where it’s needed.
The generator function has a name and parameters, meaning it can be reused. More importantly, a
generator function can have multiple statements and more complex processing logic in the cases
where statements are needed. One common reason for switching from a generator expression to a

complete generator function is to add exception handling.

Yielding items from another iterable

Often, when we build a generator function, we end up in a situation where we want to yield data
from another iterable object, possibly a list comprehension or a generator expression that we
constructed inside a generator. Or, perhaps we need to yield some external items that were passed

into the function. We’ll look at how to do this with the yield from statement.

Let’s adapt the generator example a bit so that instead of accepting an input file, it accepts the name
of a directory. The idea is to keep our existing warnings filter generator in place, but tweak the
structure of the functions that use it. We’ll operate on iterators as both input and result; this way,
the same function could be used regardless of whether the log lines came from a file, memory, the

web, or another iterator.

This version of the code illustrates a new file_extract() generator. This does some basic setup

before yielding information from the warnings_filter() generator:

import csv
import re
from pathlib impoxt Path

Chapter 10 301

from typing import Match, cast, Iterator, Iterable

def file_extract(path_iter: Iterable[Path]) -> Iterator[tuple[str, ...]1]:
for path in path_iter:
with path.open() as infile:
yield from warnings_filter(infile)

def extract_and_parse_d(directory: Path, warning_log_path: Path) -> None:
with warning_log_path.open("w", newline="") as target:
writer = csv.writer(target, delimiter="\t")
log_files = list(directory.glob("sample*.log"))
for line_groups in file_extract(log_files):
writer.writerow(line_groups)

Our top-level extract_and_parse_d() function has a slight change to use the file_extract()
function instead of opening a file and applying warnings_filter() to one file. The file_extract()

generator will yield all of the WARNING lines from all of the files provided in the argument value.
The yield from syntax is a useful shortcut when writing chained generators.

What'’s central in this example is the laziness of each of the generators involved. Consider what

happens when the extract_and_parse_d() function, the client, makes a demand:

1. The client evaluates file_extract(log_files). Since this is in a for statement, there’s an

__iter__ () method evaluation.

2. The file_extract() generator gets an iterator from the path_iter iterable, and uses this to
get the next Path instance. The Path object is used to create a file object that’s provided to

the warnings_filter() generator.

3. The warnings_filter() generator uses the file’s iterator over lines to read until it finds a
WARNING line, which it parses, yielding exactly one tuple. The fewest number of lines are

read to find this line.

4. The file_extract() generator is yielding from the warnings_filter() generator, so the

single tuple is provided to the ultimate client, the extract_and_parse_d() function.

5. The extract_and_parse_d() function writes the single tuple to the open CSV file, and then
demands another tuple. This request goes to file_extract(), which pushes the demand

down to warnings_filter (), which pushes the demand to an open file to provide lines until

302 The Iterator Pattern

a WARNING line is found.

Each generator is lazy and provides one response, doing the least amount of work it can get away
with to produce the result. This means that a directory with a huge number of giant log files is
processed by having one open log file, and one current line being parsed and processed. It won’t fill

memory no matter how large the files are.

This hand-off from generator to generator allows us to build sophisticated process-

\"/ ing from simple elements.

We’ve seen how generator functions can provide data to other generator functions. We can do this
with ordinary generator expressions also. We’ll make some small changes to the warnings_filter()

function to show how we can create a stack of generator expressions.

Generator stacks

The generator function (and the generator expression) for the warnings_filter() function makes
an unpleasant assumption. The use of cast() makes a claim to mypy that’s—perhaps—a bad claim

to make. Here’s an example:

warnings_filter = (
tuple(cast(Match[str], pattern.match(line)).groups())
for line in source
if "WARN" in line

The use of cast() is a way of claiming that pattern.match() will always yield aMatch[str] object.
This isn’t a great assumption to make. Someone may change the format of the log file to include a
multiple-line message, and our WARNING filter would crash every time we encountered a multi-line
message. (The subsequent lines would not have the expected format of a timestamp, a severity, and

a message.)

Here’s a message that would cause problems followed by a message that’s easy to process:

Jan 26, 2015 11:26:01 INFO This is a multi-line information
message, with misleading content including WARNING
and it spans lines of the log file WARNING used in a confusing way

Chapter 10 303

Jan 26, 2015 11:26:13 DEBUG Debug messages are only useful if you want to
figure something out.

The first line has the word WARNING in a multi-line message that will break our assumption about

lines that contain the text “WARN”. We need to handle this with a little more care.

We can rewrite this generator expression to create a generator function, and add an assignment
statement (to save the Match object) and an if statement to further decompose the filtering. We

can use the walrus operator, :=, to save the Match object, also.

We could reframe the generator expression as the following generator function:

def warnings_filter(source: Iterable[str]) -> Iterator[Sequence[str]]:
pattern = re.compile(xr" (\w\w\w \d\d, \d\d\d\d \d\d:\d\d:\d\d) (\w+)
.*)")
for line in source:
if match := pattern.match(line):
if "WARN" in match.group(2):
yield match.groups()

As we noted, this complex filtering tends toward deeply nested if statements, which can create
logic that’s difficult to summarize. In this case, the two conditions aren’t terribly complex. An
alternative is to change this into a series of map and filter stages, each of which does a separate,

small transformation on the input. We can decompose the matching and filtering into the following:
« Map the source line to an Match[str] | None object using the pattern.match() method

« Filter to reject any None objects, passing only good Match objects and applying the groups()

method to create a List[str]
« Filter the strings to reject the non-WARN lines, and pass the WARN lines

Each of these stages is a generator expression following the standard pattern. We can expand the

warnings_filter expression into a stack of three expressions:

possible_match_iter = (pattern.match(line) for line in source)
group_iter = (match.groups() for match in possible_match_iter if match)
warnings_filter = (group for group in group_iter if "WARN" in group[1])

These expressions are, of course, utterly lazy. The final warnings_filter uses the group_iter

304 The Iterator Pattern

iterable. This iterable gets matches from another generator, possible_match_iter, which gets
source text lines from the source object, an iterable source of lines. Since each of these generators
is getting items from another lazy iterator, there’s only one line of data being processed through

the if clause and the final expression clause at each stage of this process.

Note that we can exploit the surrounding () to break each expression into multiple lines. This can

help show the map or filter operation that’s embodied in each expression.

We can inject additional processing as long as it fits this essential mapping-and-filtering design
pattern. Before moving on, we’re going to switch to a slightly more friendly regular expression for

locating lines in our log file:

pattern = re.compile(
r" (?P<dt>\w\w\w \d\d, \d\d\d\d \d\d:\d\d:\d\d)"
r"\s+(?P<level>\w+)"
r"\s+(?P<msg>.*)"

This regular expression is broken into three adjacent strings; Python will automatically concatenate
string literals. The expression uses three named groups. The date-time stamp, for example, is group
number one, a hard-to-remember bit of trivia. The ?P<dt> inside the () means the groupdict()
method of a Match object will have the dt key in a resulting dictionary of match groups. As we

introduce more processing steps, we’ll need to be much clearer about the intermediate results.

Here’s a diagram of a regular expression that may be helpful:

Group <level> Group <msg>

[|
(wiwiw \d\d, \d\d\d\d \d\d\dvd:\d\d) ¥ | (s) — -
C) < <

Figure 10.3: Log line regular expression diagram

Group <dt>

Let’s expand this example to transform the date-time stamp to another format. This involves
injecting a transformation from the input format to the desired output format. We can do this in

one big gulp, or we can do it in a series of small sips.

This sequence of steps makes it easier to add or change one individual step without breaking the

entire processing pipeline:

Chapter 10 305

possible_match_iter = (pattern.match(line) for line in source)
group_iter = (match.groupdict() for match in possible_match_iter if match)
warnings_iter = (group for group in group_iter if "WARN" in group["level"])
dt_iter = (
(
datetime.datetime.strptime(g["dt"], "%b %d, %Y %H:%M:%S"),
g["level"],
gl"msg"1,
)
for g in warnings_iter
)
warnings_filter = ((g[@].isoformat(), g[1l], g[2]) for g in dt_iter)

We've created two additional stages. One parses the input time to create a Python datetime object;
the second stage formats the datetime object as an ISO. Breaking the transformation down into small
steps lets us treat each mapping operation and each filtering operating as discrete, separate steps.
We can add, change, and delete with a little more flexibility when we create these smaller, easier-to-
understand steps. The idea is to isolate each transformation into a separate object, described by a

generator expression.

The result of the dt_iter expression is an iterable over anonymous tuples. This is a place where a

NamedTuple can add clarity. See Chapter 8, for more information on NamedTuple.

We have an additional way to look at these transformational steps, using the built-in map () and
filter() functions. These functions provide features similar to generator expressions, using

another, slightly different syntax:

possible_match_iter = map(pattern.match, source)
good_match_iter = filter(None, possible_match_iter)
group_iter = map(lambda m: m.groupdict(), good_match_iter)
warnings_iter = filter(lambda g: "WARN" in g["level"], group_iter)
dt_iter = map(
lambda g: (
datetime.datetime.strptime(g["dt"], "%b %d, %Y %H:%M:%S"),
gl["level"],
gl"msg"],
) o
warnings_iter,
)
warnings_filter = map(lambda g: (g[@].isoformat(), g[1], g[2]), dt_iter)

306 The Iterator Pattern

The lambda objects are anonymous functions. A lambda is a callable object with parameters and a
single expression that is evaluated and returned. There’s no name and no statements in the body of
a lambda. Each stage in this pipeline is a discrete mapping or filtering operation. While we can
combine mapping and filtering into a single map(lambda ..., filter(lambda ..., source)),

this can be too confusing to be helpful.

The stack of generators works by applying small transformations to respond to the demand for
data by some collaborating object that has a for row in warnings_filter: statement. Here are

the stages:
1. The possible_match_iter applies the pattern.match() to a line of input.

2. The good_match_iter uses the special filter(None, source) to pass non-None objects, and
rejects None objects. Using None is a special case of the filter() function; it saves us from

writing a lambda object to test for “falsey” objects such as None or a zero-length string.
3. The group_iter uses alambda to evaluate m. groups () for each object, m, in good_match_iter.

4. The warnings_iter will filter the group_iter results, keeping only the WARN lines and re-

jecting all others.

5. The dt_iter performs a conversion from the source datetime format to a generic datetime

object.

6. The final warnings_filter expression reformats the datetime object in a different string

format.

We’ve seen a number of ways of approaching a complex map-filter problem. We can write nested
for and if statements. We can create explicit Iterator subclass definitions. We can create iterator-
based objects using function definitions that include the yield statement. This provides us with the
formal interface of the Iterator class without the lengthy boilerplate required to define __iter_ ()
and __next__() methods of an object. Additionally, we can use generator expressions and even

comprehensions to apply the iterator design pattern in a number of common contexts.

The iterator pattern is a foundational aspect of Python programming. Every time we work with a
collection, we’ll be iterating through the items, and we’ll be using an iterator. Because iteration is
so central, there are a variety of ways to tackle the problem. We can use for statements, generator

functions, and generator expressions, and we can build our own iterator classes.

Chapter 10 307

Recall

This chapter looked at a design pattern that seems ubiquitous in Python, the iterator. The Python
iterator concept is the foundation of the language and is used widely. In this chapter, we examined

a number of aspects:

« Design patterns are good ideas that we see repeated in software implementations, designs,
and architectures. A good design pattern has a name, and a context where it’s usable. Because
it’s only a pattern, not reusable code, the implementation details will vary each time the

pattern is followed.

« The Iterator protocol is one of the most powerful design patterns because it provides a
consistent way to work with data collections. We can view strings, tuples, lists, sets, and even
files as iterable collections. A mapping contains a number of iterable collections, including

the keys, the values, and the items (key and value pairs).

« List, set, and dictionary comprehensions are short, pithy summaries of how to create a new
collection from an existing collection. They involve a source iterable, an optional filter, and a

final expression to define the objects in the new collection.

« Generator functions build on other patterns. They let us define iterable objects that have

map and filter capabilities.

Exercises

If you don’t use comprehensions in your daily coding very often, the first thing you should do is
search through some existing code and find some for statements. See whether any of them can be

trivially converted to a generator expression or a list, set, or dictionary comprehension.

Test the claim that list comprehensions are faster than the for statement. This can be done with the
built-in timeit module. Use the help documentation for the timeit.timeit function to find out
how to use it. Basically, write two functions that do the same thing, one using a list comprehension
and one using a for statement to iterate over several thousand items. Pass each function into
timeit.timeit, and compare the results. If you're feeling adventurous, compare generators and
generator expressions as well. Testing code using timeit can become addictive, so bear in mind
that code does not need to be hyperfast unless it’s being executed an immense number of times,

such as on a huge input list or file.

Play around with generator functions. Start with basic iterators that require multiple values

308 The Iterator Pattern

(mathematical sequences are canonical examples; the Fibonacci sequence is overused if you can’t
think of anything better). Try some more advanced generators that do things such as take multiple
input lists and somehow yield values that merge them. Generators can also be used on files; can

you write a simple generator that shows lines that are identical in two files?

Extend the log processing exercise to replace the WARNING filter with a time range filter; all the
messages between January 26, 2015, 11:25:46, and January 26, 2015, 11:26:15, for example.

Once you can find WARNING lines or lines within a specific time, combine the two filters to select
only the warnings within the given time. You can use an and condition within a single generator,
or combine multiple generators, in effect building an and condition. Which seems more adaptable

to changing requirements?

When we presented the class WarningReformat(Iterator[Tuple[str, ...]]1): example of an
iterator, we made a questionable design decision. The __init__ () method accepted an open file as
an argument value and the __next__() method used readline() on that file. What if we change

this slightly and create an explicit iterator object that we use inside another iterator?

def __init_ (self, source: TextIO) -> None:
self.insequence = iter(source)

If we make this change, then _ next__() can use line = next(self.insequence) instead of
line = self.insequence.readline(). Switching from object.readline() to next(object) is
an interesting generalization. Does it change anything about the extract_and_parse_2() function?

Does it permit us to use generator expressions along with the WarningReformat iterator?

Take this one further step. Refactor the WarningReformat class into two separate classes, one to
filter for WARN and a separate class to parse and reformat each line of the input log. Rewrite the
extract_and_parse_2() function using instances of these two classes. Which is “better”? What

metric did you use to evaluate “better”?

Look at the recipes section of the itertools module. How can the itertools.partition() function

be used to partition data?

Summary

In this chapter, we learned that design patterns are useful abstractions that provide best-practice

solutions to common programming problems. We covered our first design pattern, the iterator, as

Chapter 10 309

well as numerous ways that Python uses and abuses this pattern for its own nefarious purposes.
The original iterator pattern is extremely object-oriented, but it is also rather ugly and verbose to
code around. However, Python’s built-in syntax abstracts the ugliness away, leaving us with a clean

interface to these object-oriented constructs.

Comprehensions and generator expressions can combine container construction with iteration in a

single line. Generator functions can be constructed using the yield statement.

We’ll cover several more design patterns in the next two chapters.

11

Common Design Patterns

In the previous chapter, we introduced the concept of a design pattern, and covered the iterator
pattern, a pattern so useful and common that it has been abstracted into the core of the programming
language itself. In this chapter, we’ll be reviewing other common patterns and how they are
implemented in Python. As with iteration, Python often provides an alternative syntax to make
working with such problems simpler. We will focus on the Python implementations for these

patterns, especially when the pattern is a first-class part of the Python language.
In this chapter, we’ll look at the following:

+ The Decorator pattern

« The Observer pattern

« The Strategy pattern

« The Command pattern

« The State pattern

+ The Singleton pattern

312 Common Design Patterns

Consistent with the practice in the book Design Patterns: Elements of Reusable Object-Oriented
Software, we’ll capitalize the pattern names. This can help them stand out from ordinary English

usage.

We'll start with the Decorator pattern. This is used to combine different kinds of functionality into

a single resulting object.

The Decorator pattern

The Decorator pattern allows us to wrap an object that provides core functionality with other
objects that alter this functionality. Any object that uses the decorated object will interact with it
in exactly the same way as if it were undecorated (that is, the interface of the decorated object is

identical to that of the core object).

The Decorator design pattern is part of the conceptual background behind the

,@ Python language decorator, used to add features to functions and classes.

There are two primary uses of the Decorator pattern:
+ Enhancing the response of a component as it sends data to a second component
« Supporting multiple optional behaviors

The second option is often an alternative to multiple inheritance, focused on composition. We can
construct a core object, and then create a decorator wrapping that core. Since the decorator object
has the same interface as the core object, we can even wrap the new object in other decorators. In

the next page, we’ve shown how it looks in a UML diagram.

Here, Core and all the decorators implement a specific Interface. The dashed lines show “imple-
ments” or “realizes.” The decorators maintain a reference to the core instance of that Interface
via composition. When called, the decorator does some added processing before or after calling its
wrapped interface. The wrapped object may be another decorator, or the core functionality. While
multiple decorators may wrap each other, the object at the end of the chain of all those decorators

provides the core functionality.

It’s essential that each of these is providing an implementation of a common feature. The intent is
to provide a composition of processing steps from the various decorators, applied to the core. Often

decorators are small, typically a function definition without any state.

Chapter 11 313

Interface

+someAction()

! \ Decorator2

! ! +someAction()

Decoratorl

+someAction()

Core

+someAction()

Figure 11.1: Decorator pattern in UML

In Python, because of duck typing, we don’t need to formalize these relationships with an abstract
interface definition. It’s sufficient to make sure the classes have matching methods. In some
cases, we may define typing.Protocol as a type hint to help tools like mypy reason about the

relationships.

A Decorator example

Let’s look at an example from network programming. We want to build two things: a small server
that provides some data, and a client that interacts with that server. The server will be simulating
rolling complex handfuls of dice. The client will request a handful and wait for an answer that

contains some random numbers.

This example has two processes interacting via a TCP socket, a way to transmit bytes among
computer systems. Sockets are created by a server that listens for connections. When a client
attempts to connect to the socket, the server must accept the new connection, and the two processes
can then pass bytes back and forth; for this example, there will be a request from client to server
and a response from server to client. The TCP socket is part of the foundation for HTTP, around

which the World Wide Web is built.

The interfaces for both client and server are similar. Both processes will use the socket.send()
method to transmit a string of bytes through the socket. They’ll also use socket.recv() to receive
bytes; the parameter is the upper bound on the number of bytes to accept. It can help to check the

documentation to confirm your understanding of these interfaces.

314 Common Design Patterns

We'll start with an interactive server that waits for a connection from a client and then responds to

the request. We'll call this module socket_server.py. Here’s the general outline:

import contextlib
import socket

def main_1() -> None:

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.bind(("localhost", 2401))
server.listen(1)

with contextlib.closing(server):
while True:

client, addr = server.accept()
dice_response(client)

The server is bound to the “public” socket, using a more or less arbitrary port number of 2401.
This is where the server is listening for connection requests. When a client tries to connect to this
socket, a child socket is created so the client and server can talk, leaving the public socket ready
for more connections. A web server will often use multiple threads to allow a large number of
concurrent sessions. We’re not using threads, and a second client is forced to wait until the server

is done with the first client. It’s a coffee shop queue with exactly one barista making espressos.

TCP/IP sockets have both a host address and a port number. The port number must
\t/\/ be above 1023. Port numbers 1023 and below are reserved and require special OS
2

privileges. We chose port 2401 because it doesn’t seem to be used for anything

else.

The dice_response() function does all the real work of our service. It accepts a socket parameter
so it can respond to the client. It reads bytes with a client request, creates a response, then sends it.

In order to handle exceptions gracefully, the dice_response () function looks like this:

def dice_response(client: socket.socket) -> None:
request = client.recv(1024)
try:
Future: response = dice.dice_roller(request)
response = dice_roller_ex(request)

Chapter 11 315

except (ValueError, KeyError) as ex:
response = repr(ex).encode("utf-8")
client.send(response)

We’ve wrapped another function, dice_roller(), in an exception handler. This is from a separate
module, dice. This is a common pattern to separate error-handling and other overheads from
the real work of computing a dice roll and responding to the client with useful numbers for their
game. Here’s what this underlying “so the work” dice_roller() function looks like. The following

function builds the bytes-formatted value:

import random

def dice_roller_ex(request: bytes) -> bytes:
request_text = request.decode("utf-8")
numbers = [random.randint(l, 6) for _ in range(6)]
response = f"{request_text} = {numbers}"
return response.encode("utf-8")

This isn’t too sophisticated. We’ll expand on this in the The Command pattern section later in this
chapter. For now, however, it will provide a sequence of random numbers, and encode them into a

string of bytes.

Note that we’re not really doing anything with the request object that came from the client. For
the first few examples, we’ll be reading these bytes and ignoring them. The request is a placeholder

for a more complex request describing how many dice to roll and how many times to roll them.

We can leverage the Decorator design pattern to add features. The decorator will wrap the core
dice_response() function, which is given a socket object that it can read and write. To make use
of the design pattern, it’s important to exploit the way this function relies on the socket.send()
and socket.recv () methods when we add features. We need to preserve the interface definition as

we add decorations.

To test the server, we can write a very simple client. This is an entirely separate module that will
be executed as a separate process. This client will connect to the port the server is listening on; it

makes a request and outputs the response. The essence is this function:

316 Common Design Patterns

import socket

def main() -> None:
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server.connect(("localhost", 2401))
count = input("How many rolls: ") or "1"
pattern = input("Dice pattern nd6[dk+-]a: ") or "d6"
command = f"Dice {count} {pattern}"
server.send(command.encode("utf8"))
response = server.recv(1024)
print(response.decode("utf-8"))
server.close()

This client application asks two questions and creates a fairly complex-looking string, a command
string, that contains a count and dice-rolling pattern. Right now, the server doesn’t use this

command. This is a teaser for a more sophisticated dice roller.
To use these two separate applications, follow these steps:

1. Open two terminal windows, side by side. (It can help to change the window titles to “client”
and “server” Users of macOS Terminal can use the change title item in the shell menu.

Windows users can use the title command.)

2. In the server window, start the server application:

% python src/socket_server.py

3. In the client window, start the client application:

% python src/socket_client.py

4. Enter your responses to the prompts in the client window — for example:

How many rolls: 2

Dice pattern nd6[dk+-]a: d6

5. The client will send the command, read the response, print it to the console, and exit. Run

the client as many times as you want to get a sequence of dice rolls.

Chapter 11 317

The work environment with two terminal windows will look something like this:

© 00 src — Server — python socket_server.py — 50x24) 0@ [src — Client — -zsh — 50x24
& 1s % 1s I
__pycache socket_server.py __pycache__ socket_server.py
socket_client.py socket_client.py
[# pythen socket_server.py JIl# python socket_client.py 1
Receiving b'Dice 5 2dé' from 127.0.0.1 How many xrolls: 5
Sending b'Dice 5 2d6 = [6, 9, 8, 10, 3j' to 127.0.|Dice pattern ndé[dk+-]a: 2dé
0.1 Dice 5 2d6 = [6, 9, 8, 10, 3]
Receiving b'Dice § 4d6k3' frem 127.0.0.1 (% !
Sending b'Dice 6 4d6k3 = [5, 11, 14, 8, 7, 13]' to|% python socket_client.py i
127.0.0.1 How many rolls: 6
Receiving b'Dice 3 10d48+2' from 127.0.0.1 Dice pattern ndé[dk+-ja: 4dék3
Sending b'Dice 3 10d8+2 = [42, 32, 41]' to 127.0.0|Dice & 4d6k3 = [5, 11, 14, 8, 7, 13)
.1 (% i
ﬂ (% python socket_client.py !
How many rolls: 3
Dice pattern ndg[dk+-]a: 10d8+2
Dice 3 10d8+2 = [42, 32, 41]
2l
A -

Figure 11.2: Server and client terminal windows

On the left side is the server. We started the application, and it started listening on port 2401 for
clients. On the right side is the client. Each time we run the client, it connects to the public socket;
the connection operation creates a child socket that can be used for the rest of the interaction. The

client sends a command, the server responds to that command, and the client prints it.

(The results show more sophisticated dice rolling than the server’s place-holder dice_roller_ex()

function produces.)

Now, looking back at our server code, we see two sections. The dice_response () function reads
data and sends data back to the client via a socket object. The remaining script is responsible for

creating that socket object.

The dice_response() function, awkwardly, ignores the request input, and always rolls six six-sided

dice. This needs to be fixed, of course, and that’s the subject of the The Command pattern section.

For this simple server, however, there are features missing. Logging of requests and responses is
the most important gap in this implementation. We’ll design a decoration class to customize the

socket behavior without having to extend or modify the socket itself.

We’ll add a logging decoration. This object outputs any data being sent to the server’s console

before it sends it to the client:

318 Common Design Patterns

class LogSocket:
def _ _init_ (self, socket: socket.socket) -> None:
self.socket = socket

def recv(self, count: int = @) -> bytes:
data = self.socket.recv(count)

print(f"Receiving {data!r} from {self.socket.getpeername()[0]}")
return data

def send(self, data: bytes) -> None:

print(f"Sending {data!r} to {self.socket.getpeername()[@]}")
self.socket.send(data)

def close(self) -> None:
self.socket.close()

An instance of the LogSocket class provides a socket object with a decoration added to it. The
object offers the send(), recv(), and close() interface to clients using it. A better decoration
could properly implement all of the arguments to send, (which actually accepts an optional flags
argument), but let’s keep our example simple. Whenever send() is called on an instance of the
LogSocket class, it logs the output to the screen before sending data to the client using the original

socket. Similarly, for recv(), it reads and logs the data it received.

We only have to change one line in our original code to use this decorated socket. Instead of calling

the dice_response() function with the original client socket, we call it with a decorated socket:

def main_2() -> None:

server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

server.bind(("localhost", 2401))

server.listen(1)

with contextlib.closing(server):

while True:

client, addr = server.accept()
logging_socket = cast(socket.socket, LogSocket(client)) # New
dice_response(logging_socket)
client.close()

We've decorated the core socket with a LogSocket. The LogSocket will print to the console as well
as invoking methods of the socket it decorates. The essential processing in the dice_response()

function doesn’t change, because the LogSocket instance behaves like the underlying socket object.

Chapter 11 319

Note that we needed to use an explicit cast() to tell a tool like mypy the LogSocket instance
would provide a similar interface to an ordinary socket. For a simple case like this, we have
to ask ourselves why we didn’t just extend the socket class and override the send method. A
subclass could call super().send() and super().recv() to do the actual sending, after we logged
it. Decoration offers an advantage over inheritance: a decoration can be reused among various
classes in various class hierarchies. In this specific little example, there aren’t too many socket-like

objects, so the possibilities of reuse are limited.

If we switch our focus to something more generic than a socket, we can create potentially reusable
decorators. Processing strings or bytes seems more common than processing a socket. Changing
the structure can give us some desirable flexibility in addition to reuse potential. Originally,
we broke the processing into a dice_response() function that handled the socket reading and
writing, separate from a dice_roller() function that works with bytes. Because the dice_roller()
function consumes the request bytes and produces response bytes, it can be a little simpler to expand

and add features to this function.

We can have a family of related decorators. We can decorate already decorated objects. The idea is
to give ourselves flexibility through composition. Let’s rework the logging decorator to focus on
the bytes request and response instead of the socket object. The following should look similar to

the earlier example but with some code shifted around to reside in a single __call__ () method:

type Address = tuple[str, int]

class LogRoller:
def __init_ (self, dice: Callable[[bytes], bytes], remote_addr: Address)
-> None:
self.dice_roller = dice
self.remote_addr remote_addr

def __call_(self, request: bytes) -> bytes:
print(f"Receiving {request!r} from {self.remote_addr}")
dice_roller = self.dice_roller
response = dice_roller(request)
print(f"Sending {response!r} to {self.remote_addr}")
return response

Here’s a second decorator that compresses data using gzip compression on the resulting bytes:

320 Common Design Patterns

import gzip
import io

class ZipRoller:
def __init_ (self, dice: Callable[[bytes], bytes]) -> None:
self.dice_roller = dice

def __call_(self, request: bytes) -> bytes:
dice_roller = self.dice_roller
response = dice_roller(request)
buffer = io.BytesIO()
with gzip.GzipFile(fileobj=buffer, mode="w") as zipfile:
zipfile.write(response)
return buffer.getvalue()

This decorator compresses the response data before sending it on to the client. It decorates an

underlying dice_roller object that computes a response to a request.

Now that we have these two decorators, we can write code that piles one decoration on top of

another:

def dice_response(client: socket.socket) -> None:
request = client.recv(1024)
try:
remote_addr = client.getpeername()
roller_1 = ZipRoller(dice.dice_xroller)
roller_2 LogRoller(roller_1, remote_addr=remote_addr)
response = roller_2(request)

except (ValueError, KeyError) as ex:
response = repr(ex).encode("utf-8")
client.send(response)

The intent here is to separate three aspects of this application:
+ Doing the underlying computation
« Decorating the computation to compress the resulting document
« Decorating the computation to write a log

We can apply the zip or logging to any similar application that works with receiving and sending

bytes. We can, if we want, make the zipping operation a dynamic choice, also. We might have a

Chapter 11 321

separate configuration file to enable or disable the GZip feature. This means something like the

following:

if config.zip_feature:

roller_1 = ZipRoller(dice.dice_roller)
else:

roller_1 = dice.dice_roller

This lets us have a dynamic set of decorations. Try writing this using a multiple inheritance mixin

and see how confused it becomes!

Decorators in Python

The Decorator pattern is central to Python. There are, of course, additional options. For example,
we can use monkey-patching — changing the class definition at runtime — to get a similar effect.
For example, socket.socket.send = log_send will change the way the built-in socket works by
replacing a method with another function. There are sometimes surprising implementation details

that can make this unpleasantly complex. We discourage using monkey patches.

Single inheritance, where the optional calculations are done in one large method with a bunch of
if statements, could be an option. Multiple inheritance should not be written off just because it’s

not suitable for the specific example seen previously.

In Python, it is very common to use this pattern on functions. As we saw in a previous chapter,
functions are objects too. In fact, function decoration is so common that Python provides a special

syntax to make it easy to apply such decorators to functions.

For example, we can look at the logging example in a more general way. Instead of logging only
send calls on sockets, we may find it helpful to log all calls to certain functions or methods. The

following example implements a decorator that does just this:

from functools import wraps

def log_args(function: Callable[..., Any]) -> Callable[..., Any]:
@wraps (function)
def wrapped_function(*args: Any, **kwargs: Any) -> Any:
print(f"Calling {function.__name__}(*{args}, **{kwargs})")
result = function(*args, **kwargs)

322 Common Design Patterns

return result

return wrapped_function

This decorator function is very similar to the example we explored earlier. In the earlier examples,
the decorator took a socket-like object and created a socket-like object. This time, our decorator takes
a function object and returns a new function object. We’ve provided a type hint of Callablef.. .,

Any] to state that any function will work here. This code comprises three separate tasks:
« A function, log_args (), that accepts another function, function, as a parameter value

« This function defines (internally) a new function, named wrapped_function, that does some
extra work before calling the original function and returning the results from the original

function
o The new inner function, wrapped_function(), is returned from the decorator function

Because we’re using @wraps (function), the new function will have a copy of the original func-
tion’s name and docstring. This avoids having all of the functions we decorate wind up named

wrapped_function.

Here’s a sample function to demonstrate the decorator in use:

def testl(a: int, b: int, c: int) -> float:
return sum(range(a, b + 1)) / c
This function can be decorated and used like this:

>>> testl = log_args(testl)
>>> testl(1l, 9, 2)

Calling testl(*(1, 9, 2), **{})
22.5

This syntax allows us to build decorated function objects dynamically, just as we did with the socket
example. If we don’t use assignment to assign the new object to the old name, we can even keep
the decorated and the non-decorated versions for different situations. We could use a statement
like test1_log = log_args(testl) to create a second, decorated version of the test1() function,

named test1_log().

Chapter 11 323

Typically, these decorators are general modifications that are applied permanently to different
functions. In this situation, Python supports a special syntax to apply the decorator at the time the
function is defined. We’ve already seen this syntax in several places — starting in Chapter 5 — now,

let’s understand how it works.

Instead of applying the decorator function after the method definition, we can use the @decorator

syntax to do it all at once:

>>> @log_args
. def testl(a: int, b: int, c: int) -> float:
return sum(range(a, b + 1)) / c

>>> testl(1l, 9, 2)
Calling testl(*(1, 9, 2), **{})
22.5

The primary benefit of this syntax is that we can easily see that the function has been decorated
whenever we read the function definition. If the decorator is applied later, someone reading the code
may miss that the function has been altered at all. Answering a question like Why is my program
logging function calls to the console? can become much more difficult if the decoration isn’t obvious!
However, the syntax can only be applied to functions we define, since we don’t have access to the
source code of other modules. If we need to decorate functions that are part of somebody else’s

third-party library, we have to use the function = decorator(function) syntax.

Python’s decorators permit parameters, also. One of the most useful decorators in the standard
library is functools.lru_cache. The idea of a cache is to save computed results of a function to
avoid recomputing them. Rather than save all of the parameters and results, we can keep the cache
small by discarding the least recently used (LRU) values. For example, here’s a function that

involves a potentially expensive computation:

>>> from math import factorial
>>> def binom(n: int, k: int) -> int:
return factorial(n) // (factorial(k) * factorial(n - k))

>>> f"6-card deals: {binom(52, 6):,d}"
'6-card deals: 20,358,520

We can use the 1ru_cache decorator to avoid doing this computation once the answer is known.

Here’s the small change required:

324 Common Design Patterns

>>> from math import factorial
>>> from functools import lru_cache

>>> @lru_cache(64)
. def binom(n: int, k: int) -> int:
return factorial(n) // (factorial(k) * factorial(n - k))

>>> f"6-card deals: {binom(52, 6):,d}"
'6-card deals: 20,358,520

The parameterized decorator, @1ru_cache (64), used to create this second version of the binom()
function means it will save the most recent 64 results to avoid recomputing values when they’ve
already been computed once. No change is needed elsewhere in the application. Sometimes, the
speedup from this small change can be dramatic. We can, of course, fine-tune the size of the cache

based on the data and the number of computations that are being performed.

Parameterized decorators like this involve a two-step dance. First, we customize the decorator
with the parameter — 64 in the preceding example. Then we apply that customized decorator to
a function definition. These two separate steps follow a design pattern that’s a bit like a callable
object: they can be initialized with the __init__ () method, and the resulting object can be called,

like a function, via their __call__ () method.

Here’s an example of a configurable logging decorator, NamedLogger:

class NamedlLogger:
def __init__ (self, logger_name: str) -> None:
self.logger = logging.getlLogger(logger_name)

def __call__ (self, function: Callable[..., Any]) -> Callable[..., Any]:
@wraps (function)
def wrapped_function(*args: Any, **kwargs: Any) -> Any:
start = time.perf_counter()
try:
result = function(*args, **kwargs)
ps = (time.perf_counter() - start) * 1_000_000
self.logger.info(f"{function.__name__}, {pus:.1f}us")
return result
except Exception as ex:
ps = (time.perf_counter() - start) * 1_000_000
self.logger.error(f"{ex}, {function.__name__}, {pus:.1f}us")

Chapter 11 325

raise

return wrapped_function

The __init__() method makes sure we can use code like NamedLogger (“log4"”) to create a decora-

tor; this decorator will make sure the function that follows uses a specific logger.

The __call__() method follows the preceding pattern. We define a new function, wrapped_function(),

that does the work, and return that newly minted function. We can use it like this:

>>> @NamedlLogger("log4")

. def test4(median: float, sample: float) -> float:
return abs(sample - median)

We’ve created an instance of the NamedLogger class. Then we applied this instance to the test4()
function definition. The __call__ () methodisinvoked, and will create a new function, the decorated

version of the test4 () function.

There are a few more use cases for the decorator syntax. For example, when a decorator is a method
of a class, it can also save information about the decorated function, creating a registry of decorated
functions. Further, classes can also be decorated; in that case, the decorator returns a new class
instead of a new function. In all of these more advanced cases, we’re using ordinary object-oriented

design with the simpler-looking syntax of @decorator.

The Observer pattern

The Observer pattern is useful for state monitoring and event handling situations. This pattern
allows a given object to be monitored by an unknown and dynamic group of observer objects. The

core object being observed needs to implement an interface that makes it observable.

Whenever a value on the core object changes, it lets all the observer objects know that a change
has occurred, by calling a method announcing there’s been a change of state. This is used widely in
GUIs to make sure that any state change in the underlying model is reflected in the views of the
model. It’s common to have detail and summary views; a change to the details must also update
the widgets that display the details and update any summaries that are displayed, also. Sometimes
a large change in mode may lead to a number of items being changed. For instance, clicking a

“lock” icon may alter a number of displayed items to reflect their status as locked. This can be

326 Common Design Patterns

implemented as a number of observers attached to the observable display widget.

In Python, the observer can be notified via the __call__ () method, making each observer behave
like a function or other callable object. Each observer may be responsible for different tasks
whenever the core object changes; the core object doesn’t know or care what those tasks are, and

the observers don’t typically know or care what other observers are doing.

This allows tremendous flexibility by decoupling the response to a state change from the change

itself.

Here is a depiction of the Observer design pattern in UML:

Observer Observable
+observable: Observable +_observers: List(Observer]
+_call_() +attach(Observer)

A b f
7 \
7/ \
/ 1
/ 1 Core
Observer2 Observerl

+_observers: List(Observer]

+_call_() +_call_() +attach(Observer)
+someAction()

Figure 11.3: Observer pattern in UML

We’ve shown the Core object as containing a list of observer objects. To be observable, the Core
class must adhere to a common understanding of observability; specifically, it must provide a list of

observers and a way to attach new observers.

We’ve shown the Observer subclasses as having a __call__ () method. This will be used by the
observable to notify each observer of a state change. As with the Decorator pattern, we don’t need
to formalize the relationships with formally defined abstract superclasses. In most cases, we can
rely on duck typing rules; as long as the observers have the right interface, they can be used in
the defined role in this pattern. If they lack the proper interface, a tool like mypy may catch the

conflict, and a unit test should catch the problem.

An Observer example
Outside a GUI, the Observer pattern is useful for saving intermediate states of objects. Using
observer objects can be handy in systems where a rigorous audit of changes is required. It’s also

handy in a system where chaos reigns and components are unreliable.

Chapter 11 327

Complex, cloud-based applications can suffer from chaos issues due to unreliable connections. We

can use observers to record state changes, making recovery and restart easier.

For this example, we’ll define a core object to maintain a collection of important values, and then
have one or more observers create serialized copies of that object. These copies might be stored
in a database, on a remote host, or in a local file, for example. Because we can have a number
of observers, it’s easy to modify the design to use different data caches. For this example, we’re
thinking of a dice game called Zonk or Zilch or Ten Thousand, where a player will roll six dice,

score some points for triples and runs, and possibly roll again, leading to a sequence of dice rolls.
(The rules are a bit more complex than this glib summary.)

We'll start with a few overheads to help make our intention clear:

from typing import Protocol

class Observer(Protocol):
def _ call_ (self) -> None:

class Observable:
def _ init_ (self) -> None:
self._observers: list[Observer] = []

def attach(self, observer: Observer) -> None:
self._observers.append(observer)

def detach(self, observer: Observer) -> None:
self._observers.remove(observer)

def _notify_observers(self) -> None:
for observer in self._observers:
observer()

The Observer class is a protocol, an abstract superclass for our observers. We didn’t formalize it
as an abc.ABC abstract class; we’re not relying on the runtime error offered by the abc module.
When defining a Protocol, we’re relying on tools like mypy to confirm that all observers actually

implement the required method.

The Observable class defines the _observers instance variable and three methods that are purely

328 Common Design Patterns

part of this protocol definition. An observable object can append an observer, remove an observer,
and — most important — notify all the observers of a state change. The only thing the core class
needs to do that’s special or different is to make calls to the _notify_observers() method when
there’s a state change. Appropriate notification is an important piece of the design for an observable

object.

Here’s part of the Zonk game we care about. This class keeps a player’s hands:

type Hand = list[int]

class ZonkHandHistory(Observable):
def __init_ (self, player: str, dice_set: Dice) -> None:
super().__init__()
self.player = player
self.dice_set = dice_set
self.rolls: list[Hand]

def start(self) -> Hand:
self.dice_set.ro0ll()
self.rolls = [self.dice_set.dice]
self._notify_observers() # State change
return self.dice_set.dice

def roll(self) -> Hand:
self.dice_set.roll()
self.rolls.append(self.dice_set.dice)
self._notify_observers() # State change
return self.dice_set.dice

This class makes calls to self._notify_observers() on important state changes. This will notify
all the observer instances. The observers might cache copies of the hand, send details over a network,
update widgets on a GUI — any number of things. The _notify_observers() method inherited
from Observable iterates over all registered observers and lets each know that the state of the hand

has changed

Now let’s implement a simple observer object; this one will print out some state to the console:

class SaveZonkHand(Observer):
def __init__ (self, hand: ZonkHandHistory) -> None:

Chapter 11 329

self.hand = hand
self.count = 0@

def _ call__ (self) -> None:
self.count += 1
message = {
"player": self.hand.player,
"sequence": self.count,
"hands": json.dumps(self.hand.rolls),
"time": time.time(),

}
print(f"SaveZonkHand {message}")

There’s nothing terribly exciting here; the observed object is set up in the initializer, and when
the observer is called, we do something — in this example, printing a line. Note that the superclass,
Observer, isn’t actually needed here. The context in which this class is used is sufficient for mypy
to confirm this class matches the required Observer protocol. While we don’t need to state that it’s

an Observer, it can help readers to see that this class implements the Obsexrver protocol.

We can test the SaveZonkHand observer in an interactive console:

>>> d = Dice.from_text("6d6")
>>> player = ZonkHandHistory("Bo", d)

>>> save_history = SaveZonkHand(player)

>>> player.attach(save_history)

>>> rl = player.start()

SaveZonkHand {'player': 'Bo', 'sequence': 1, 'hands': '[[1, 1, 2, 3, 6,
61]1', 'time': ...}

>>> 1l

[1, 1, 2, 3, 6, 6]

>>> r2 = player.roll()

SaveZonkHand {'player': 'Bo', 'sequence': 2, 'hands': '[[1, 1, 2, 3, 6, 6],
[1, 2, 2, 6, 6, 6]1]1', 'time': ...}

>>> 12

[1, 2, 2, 6, 6, 6]

(Note that the time is replaced with The exact value varies every time this is run, making it

difficult to use doctest and confirm that output matches our expectations.)

330 Common Design Patterns

After attaching the observer to the Inventory object, whenever we change one of the two observed
properties, the observer is called and its action is invoked. Note that our observer tracks a sequence
number and includes a timestamp. These are outside the game definition, and are kept separate

from the essential game processing by being part of the SaveZonkHand observer class.

We can add multiple observers of a variety of classes. Let’s add a second observer that has a limited

job to check for three pairs and announce it:

class ThreePairZonkHand:
"""Observer of ZonkHandHistory"""

def __init_ (self, hand: ZonkHandHistory) -> None:
self.hand = hand
self.zonked = False

def _ _call_ (self) -> None:
last_roll = self.hand.rolls[-1]
distinct_values = set(last_roll)
self.zonked = len(distinct_values) == 3 and all(
last_roll.count(v) == 2 for v in distinct_values

)
if self.zonked:
print("3 Pair Zonk!")

For this example, we omitted naming Observer as a superclass. We can trust a tool like mypy
to note how this class is used and what protocols it must implement. Introducing this new
ThreePairZonkHand observer means that when we change the state of the hand, there may be
two sets of output, one for each observer. The key idea here is that we can easily add totally different
types of observers to do different kinds of things — in this case, copying the data as well as checking

for a special case in the data.

The Observer pattern detaches the code being observed from the code doing the observing. If we
were not using this pattern, we would have had to put code in the ZonkHandHistory class to handle
the different cases that might come up: logging to the console, updating a database or file, checking
for special cases, and so on. The code for each of these tasks would all be mixed in with the core
class definition. Maintaining it would be a nightmare and adding new monitoring functionality at a

later date would be painful.

Chapter 11 331

The Strategy pattern
The Strategy pattern is a common demonstration of abstraction in object-oriented programming.

The pattern implements different solutions to a single problem, each in a different object. The core

class can then choose the most appropriate implementation dynamically at runtime.

Typically, different algorithms have different trade-offs. One might be faster than another, but uses
a lot more memory, while a third algorithm may be most suitable when multiple CPUs are present

or a distributed system is provided.

Here is the Strategy pattern in UML:

Core

+strategy: Strategy

+someAction()

Strategy

+someAction()

g %

/ \
/ AN
/ \
Implementationl Implementation2
+someAction() +someAction()

Figure 11.4: Strategy pattern in UML

The Core code connecting to the Strategy abstraction simply needs to know that it is dealing
with some kind of class that fits the Strategy interface for this particular action. Each of the
implementations should perform the same task, but in different ways. The implementation interfaces
need to be identical, and it’s often helpful to leverage an abstract base class to make sure the

implementations match.

This idea of a plug-in strategy is also an aspect of the Observer pattern. Indeed, the idea of strategy
objects is an important aspect of many of the patterns covered in this chapter. The common idea is
to use a separate object to isolate conditional or replaceable processing and delegate the work to
the separate object. This works for observables, decorations, and — as we’ll see — commands and

states, also.

332 Common Design Patterns

A Strategy example

One common example of the Strategy pattern is sort routines. Over the years, numerous algorithms
have been invented for sorting a collection of objects. Quick sort, merge sort, and heap sort are all
algorithms with different features, each useful in its own right, depending on the size and type of

inputs, how out of order they are, and the requirements of the system.

If we have client code that needs to sort a collection, we could pass it to an object with a sort()
method. This object may be a QuickSorter or MergeSorter object, but the result will be the same
in either case: a sorted list. The strategy used to do the sorting is abstracted from the calling code,

making it modular and replaceable.

Of course, in Python, we typically just call the sorted() function or list.sort() method and trust
that it will do the sorting quickly enough that the details of the TimSort algorithm don’t really
matter. For details on how amazingly fast TimSort is, see https://bugs.python.org/file4451/t
imsort.txt. While sorting is a helpful concept, it’s not the most practical example, so let’s look at

something different.

As a simpler example of the Strategy design pattern, consider a desktop wallpaper manager. When
an image is displayed on a desktop background, it can be adjusted to the screen size in different
ways. For example, assuming the image is smaller than the screen, it can be tiled across the screen,
centered on it, or scaled to fit. There are other, more complicated strategies that can be used as well,
such as scaling to the maximum height or width, combining it with a solid, semi-transparent, or
gradient background color, or other manipulations. While we may want to add these strategies

later, let’s start with a few basic ones.

You’ll need to install the pillow module from the PIL project. If you’re using conda to manage your
virtual environments, use conda install pillow to install the library. For tools like uv, a command
like uv add pillow is needed. If you’re not using a tool to manage the virtual environment, use
python -m pip install pillow.

Our Strategy objects need to take two inputs: the image to be displayed, and a tuple of the width
and height of the screen. They each return a new image the size of the screen, with the image

manipulated to fit according to the given strategy.

Here are some preliminary definitions, including an abstract superclass for all of the strategy

variants:

https://bugs.python.org/file4451/timsort.txt
https://bugs.python.org/file4451/timsort.txt

Chapter 11 333

import abc

from pathlib import Path

import PIL.Image as image_module

from PIL.Image import Image # Image class from Image module

type Size = tuple[int, int]

class FillAlgorithm(abc.ABC):
@abc.abstractmethod
def make_background(self, img_file: Path, desktop_size: Size) -> Image:
pass

Is this abstraction necessary? This sits right on the fence between too simple to require an abstraction
and complex enough that the superclass helps clarify the design. The function signature is kind of
complex, with a special type hint to describe the size tuple. For this reason, the abstraction can help

check each implementation to be sure all the types match.

Here’s our first concrete strategy; this is a fill algorithm that tiles the images:

class TiledStrategy(FillAlgorithm):
def make_background(self, img_file: Path, desktop_size: Size) -> Image:
in_img = image_module.open(img_file)
out_img = image_module.new("RGB", desktop_size)
num_tiles = [o // i + 1 for o, i in zip(out_img.size, in_img.size)]
for x in range(num_tiles[@]):
for y in range(num_tiles[1]):
out_img.paste(
in_img,
(
in_img.size[@] * x,
in_img.size[1l] * vy,
in_img.size[@] * (x + 1),
in_img.size[1] * (y + 1),
)
)

return out_img

This works by dividing the output height and width by the input image height and width. The
num_tiles sequence is a way of doing the same computation to widths and heights. It’s a two-tuple

computed via a list comprehension to be sure both width and height are processed the same way.

334 Common Design Patterns

Here’s a fill algorithm that centers the image without re-scaling it:

class CenteredStrategy(FillAlgorithm):
def make_background(self, img_file: Path, desktop_size: Size) -> Image:
in_img = image_module.open(img_file)
out_img = image_module.new("RGB", desktop_size)
left = (out_img.size[@] - in_img.size[@]) // 2
top = (out_img.size[1l] - in_img.size[1]) // 2
out_img.paste(
in_img,
(left, top, left + in_img.size[@], top + in_img.size[1]),
)

return out_img

Finally, here’s a fill algorithm that scales the image up to fill the entire screen:

class ScaledStrategy(FillAlgorithm):
def make_background(self, img_file: Path, desktop_size: Size) -> Image:
in_img = image_module.open(img_file)
out_img = in_img.resize(desktop_size)
return out_img

Here, we have three strategy subclasses, each using the PIL.Image module to perform their task.
All the strategy implementations have a make_background() method that accepts the same set of
parameters. Once selected, the appropriate Strategy object can be called to create a correctly sized
version of the desktop image. The TiledStrategy class computes the number of input image tiles
that would fit in the width and height of the display screen and copies the image into each tile
location, repeatedly, without rescaling, so it may not fill the entire space. The CenteredStrategy
class figures out how much space needs to be left on the four edges of the image to center the image.
The ScaledStrategy forces the image to the output size, without preserving the original aspect

ratio.

Here’s an overall object that does resizing, using one of these Strategy classes. The algorithm

instance variable is filled in when a Resizer instance is created:

class Resizer:
def __init__ (self, algorithm: FillAlgorithm) -> None:
self.algorithm = algorithm

Chapter 11 335

def resize(self, image_file: Path, size: Size) -> Image:
result = self.algorithm.make_background(image_file, size)
return result

To be complete, here’s a main function that builds an instance of the Resizer class and applies one

of the available Strategy classes:

def main() -> None:
image_file = Path.cwd() / "boat.png"
tiled_desktop = Resizer(TiledStrategy())
tiled_image = tiled_desktop.resize(image_file, (1920, 1080))
tiled_image.show()

What’s important is the binding of the Strategy instance happens as late as possible in the processing.
The decision can be made (and unmade) at any point in the processing. In this example, we’ve made
sure any of the available strategy objects can be plugged into a Resizer object at any time. The
use of inheritance to provide alternatives and composition to inject any of those alternatives is the

essence of the Strategy pattern.

Consider how switching between these options would be implemented without the Strategy pattern.
We’d need to put all the code inside one great big method and use an awkward if statement to
select the expected one. Every time we wanted to add a new strategy, we’d have to make the method

even more ungainly.

Strategy in Python
The preceding canonical implementation of the Strategy pattern, while very common in most
object-oriented libraries, isn’t always ideal in Python. It involves some overheads that aren’t really

necessary.

These strategy classes each define objects that do nothing but provide a single method. We could
just as easily call that function __call__ and make the object callable directly. Since there is no
other data associated with the object, we need do no more than create a set of top-level functions

and pass them around as our strategies instead.

Instead of the overheads of an abstract class, we could summarize these strategies with a type hint

that describes them as a union of class definitions:

336 Common Design Patterns

type FillAlgorithm_T = TiledStrategy | CenteredStrategy | ScaledStrategy

(We put a _T suffix on the name to distinguish the base class from the type alias. This kind of
naming convention is not recommended at all; it’s only required to keep the two declarations from

colliding in this book’s example files.)

When we do this, we can eliminate all of the references to FillAlgorithm as base classes in
the class definitions. For example, we’d change class CenteredStrategy(FillAlgorithm): to
class CenteredStrategy:. This means adding a new algorithm will also require updating the

FillAlgorithm_T type hint.

Because we have a choice between an abstract class and a type hint, the Strategy design pattern
seems superfluous. This leads to an odd conversation, starting with “Because Python has first-class
functions, the Strategy pattern is actually unnecessary.” In truth, Python’s first-class functions allow
us to implement the Strategy pattern in a more straightforward way, without the overhead of
class definitions. The pattern is more than the implementation details handed down from other,
statically-compiled languages. Knowing the pattern can help us choose a good design for our
program, and implement it using the most readable syntax. The Strategy pattern, whether a class
or a function, should be used when we need to allow client code or the end user to select from

multiple implementations of the same interface at runtime.

There’s a bright line separating mixin class definitions from plug-in strategy objects. As we saw
in Chapter 6, mixin class definitions are created in the source code, and cannot easily be tweaked
at runtime. A plug-in strategy object, however, is filled in at runtime, allowing late binding of the
strategy. The code tends to be very similar between them, and it helps to write clear docstrings on

each class to explain how the various classes fit together.

The Command pattern

When we think about class responsibilities, we can sometimes distinguish “passive” classes that
hold objects and maintain an internal state, but don’t initiate very much, and “active” classes that
reach out into other objects to take action and do things. This is not always a crisp distinction, but
it can help separate the relatively passive Observer and the more active Command design patterns.
An Observer is notified that something changed. A Command, on the other hand, will be active,
making state changes in other objects. We can combine the two aspects, and that’s one of the

beauties of talking about a software architecture by describing the various patterns that apply to a

Chapter 11 337

class or a relationship among classes.

The Command pattern generally involves a hierarchy of classes that each do something. A Core

class can create a command (or a sequence of commands) to carry out actions.

In a way, it’s a kind of meta-programming: by creating Command objects that contain a bunch of

statements, the design has a higher-level “language” of Command objects.

Here’s a UML diagram showing a Core object and a collection of Commands:

Core
+stuff_to_do: ListfCommand)]

Command

+execute()

Command1l Command?2

+execute() +execute()

Figure 11.5: Command pattern in UML

This looks similar to the diagrams for the Strategy and Observer patterns because all these patterns
rely on delegating work from a Core object to a plug-in object — in this case, a sequence of individual

plug-in objects that represent a sequence of commands to perform.

A Command example

As an example, we’lllook at the fancy dice rolling that was omitted from the Decorator pattern
example earlier in this chapter. In the earlier example, we had a function, dice_roller(), that

computed a sequence of random numbers:

import random

def dice_roller_ex(request: bytes) -> bytes:
request_text = request.decode("utf-8")

338 Common Design Patterns

numbers = [random.randint(l, 6) for _ in range(6)]
response = f"{request_text} = {numbers}"
return response.encode("utf-8")

This isn’t very clever; we’d rather handle something a little more sophisticated. We want to be
able to make requests using strings like *3d6’ to mean three six-sided dice, ' 3d6+2" to mean three
six-sided dice plus a bonus of two more, and something a little more obscure like '4d6d1’ to mean
“roll four six-sided dice and drop the lowest die” We might want to combine things and write

'4d6d1+2", also, to combine dropping the lowest and adding two to the result.

These d1 and +2 options at the end can be viewed as a series of commands. There are four common

5

varieties: “drop,” “keep,” “add,” and “subtract” There can be a lot more, of course, to reflect a

wide variety of game mechanics and desired statistical distributions, but we’ll look at these four

commands to modify a batch of dice.

Here’s the regular expression we’re going to implement:

dice_pattern = re.compile(r" (?P<n>\d*)d(?P<d>\d+) (?P<a>(?:[dk+-]1\d+)*)")

This regular expression can be a little daunting. Some people find the railroad diagrams at https:

/ /www . debuggex . com to be helpful. Here’s a depiction as a UML state diagram:

(R
Group <a>

- ~
Group <n> Group <d> [dk+-]

Figure 11.6: Dice-parsing regular expression

This pattern has four parts:

1. The first named group, (?P<n>*), captures a batch of digits for the number of dice, saving

this as a group named n. This is optional, allowing us to write d6 instead of 1dé.

2. The letter “d”, which must be present, but isn’t captured.

https://www.debuggex.com
https://www.debuggex.com

Chapter 11 339

3. The next named group, (?P<d>+), captures the digits for the number of faces on each
die, saving this as a group named d. If we were very fussy, we might try to limit this
to (4|6|8|10|12|20|100) to define an acceptable list of regular polyhedral dice (and two
common irregular polyhedrons). We didn’t provide this short list; instead, we’ll accept any

sequence of digits.

4. The final named group, (?P<a>(?: [dk+-1+)*), defines a repeating series of adjustments.
Each one has a prefix and a sequence of digits — for example, d1 or k3 or +1 or -2. We’ll
capture the whole sequence of adjustments as group a, and decompose the parts separately.

Each of these parts will become a command, following the Command design pattern.

We will design dice rolling as a sequence of commands. The first command rolls the dice, and then

subsequent commands adjust the value of the dice: keeping, dropping, adding, or subtracting.
For example, 3d6+2 means roll three dice (maybe we get (), and add 2 to get 13 in total.

The class, overall, looks like this:
import re

class Dice:
def __init_ (self, n: int, d: int, *adj: Adjustment) -> None:
self.adjustments = [Roll(n, d)] + list(adj)
self.dice: list[int]
self.modifier: int

def roll(self) -> int:
for a in self.adjustments:
a.apply(self)
return sum(self.dice) + self.modifier

When we want a new roll of the dice, a Dice object applies the individual Adjustment objects to
create a new roll. We can see one of the kinds of Adjustment objects in the __init__ () method: a
Roll object. This is put first into a sequence of adjustments; after that, any additional adjustments

are processed in order. Each adjustment is another kind of command.

Here are the kinds of adjustment commands that change the state of a Dice object:

import abc
import random

340 Common Design Patterns

class Adjustment(abc.ABC):
def _ init_ (self, amount: int) -> None:
self.amount = amount

@abc.abstractmethod
def apply(self, dice: "Dice") -> None:

class Roll(Adjustment):
def __init_ (self, n: int, d: int) -> None:
self.n = n
self.d = d

def apply(self, dice: "Dice") -> None:
dice.dice = sorted(random.randint(1l, self.d) for _ in range(self.n))
dice.modifier = @

class Drop(Adjustment):
def apply(self, dice: "Dice") -> None:
dice.dice = dice.dice[self.amount :]

class Keep(Adjustment):
def apply(self, dice: "Dice") -> None:
dice.dice = dice.dice[: self.amount]

class Plus(Adjustment):
def apply(self, dice: "Dice") -> None:
dice.modifier += self.amount

class Minus(Adjustment):
def apply(self, dice: "Dice") -> None:
dice.modifier -= self.amount

An instance of the Roll() class sets the values of the dice and the modifier attribute of a Dice
instance. The other Adjustment objects either remove some dice or change the modifier. The

operations depend on the dice being sorted. That makes it easy to drop the worst or keep the best

Chapter 11 341

via slice operations. Because each adjustment is a command, they make adjustments to the overall

state of the dice that were rolled.

The missing piece is translating the string dice expression into a sequence of Adjustment objects.
We’ve made this a @classmethod of the Dice class. This lets us use Dice.from_text() to create a
new Dice instance. It also provides the subclass as the first parameter value, c1s, making sure that

each subclass creates proper instances of itself, not this parent class.

Here’s the definition of this method:

@classmethod

def from_text(cls, dice_text: str) -> "Dice":
dice_pattern =
re.compile(x" (?P<n>\d*)d(?P<d>\d+) (?P<a>(?:[dk+-]1\d+)*)")
adjustment_pattern = re.compile(r"([dk+-1) (\d+)")
adj_class: dict[str, type[Adjustment]] = {

"d": Drop,
"k": Keep,
"+": Plus,
"-": Minus,
}
if (dice_match := dice_pattern.match(dice_text)) is None:

raise ValueErroxr(f"Error in {dice_text!r}")
n = int(dice_match.group("n"
d = int(dice_match.group("d"
adjustment_matches =
adjustment_pattern.finditer(dice_match.group("a") or "")
adjustments = [

adj_class[a.group(1l)](int(a.group(2))) foxr a in

adjustment_matches

)) if dice_match.group("n") else 1
))

]

return cls(n, d, *adjustments)

The overall dice_pattern is applied first and the result is assigned to the dice_match variable.
If the result is a None object, the pattern didn’t match, and we can’t do much more than raise a
ValueError exception and give up. The adjustment_pattern is used to decompose the string of
adjustments in the suffix of the dice expression. A list comprehension is used to create a list of

objects from the Adjustment class definitions.

342 Common Design Patterns

Each Adjustment class is a separate command. The Dice class will inject an additional command,
Roll, that starts the processing by simulating a roll of the dice. Then the adjustment commands

can apply their individual changes to the initial roll.

This design allows us to manually create an instance like this:

>>> d = Dice(4, D6, Keep(3), Plus(2))
>>> d.roll()

10

The first two positional parameters define the special Rol11l command. The remaining parameters
can include any number of further adjustments. In this case, there are two: a Keep(3) command and
a Plus(2) command. The alternative is to parse text, like this: dice.Dice. from_text(“4d6k3+2").
This will build the Ro11 command and the other Adjustment commands. Each time we want a new
roll of the dice, the sequence of commands is executed, rolling the dice and then adjusting that roll

to give a final outcome.

The State pattern

The State pattern is structurally similar to the Strategy pattern, but its intent and purpose are very
different. The goal of the State pattern is to represent state transition systems: systems where an
object’s behavior is constrained by the state it’s in, and some of the behavior includes transitions

from state to state.

One way to make this work is to define a manager or context class that provides an interface for
the various states. Internally, this class is a container for an object that represents the current state.

A state object can change the state of the manager, transition to a different state object.
In the next page, we’ve shown how it looks in UML.

The State pattern decomposes the problem into two types of classes: the Core class and multiple
State classes. The Core class maintains the current state, and forwards actions to a current state
object. The State objects are typically hidden from any other objects that are calling the Core

object; they act like a black boxes that happen to perform state management internally.

A State example

One of the mostcompelling state-specific processing examples is parsing text. When we write a

regular expression, we're detailing a series of alternative state changes used to match a pattern

Chapter 11 343

Core

+current_state: State

+process(core: "Core")

State

+process(core: Core)

- | ~

- | ~

Statel State2 State3

+process(core: Core) +process(core: Core) +process(core: Core)

Figure 11.7: State pattern in UML

against a sample piece of text. At a higher level, parsing the text of a programming language or a
markup language is also highly stateful work. Markup languages like XML, HTML, YAML, TOML,
or even reStructuredText and Markdown all have stateful rules for what is allowed next and what

is not allowed next.

We’ll look at a relatively simple language that crops up when solving Internet of Things (IoT)
problems. The data stream from a GPS receiver is an interesting problem. Parsing statements in
this language is an example of the State design pattern. The language used by GPS devices to report
positions is the NMEA 0183 language from the National Marine Electronics Association.

The output from a GPS antenna is a stream of bytes that form a sequence of “sentences.” Each
sentence starts with $, includes printable characters in the ASCII encoding, and ends with a carriage
return and a newline character. A GPS device’s output includes a number of different kinds of

sentences, including the following:
« GPRMC - recommended minimum data
+ GPGGA - global position
« GPGLL - latitude and longitude
« GPGSV - satellites in view
+ GPGSA - active satellites

There are many, many more messages available, and they come out of the antenna device at a pace
that can be bewildering. They all have a common format, however, making them easy to validate
and filter so we can use the good ones, and ignore the ones that aren’t providing useful information
for our specific application. We can also reject messages that are incomplete when our IoT device is

first powered on, or suffer from some other problem.

344 Common Design Patterns

A typical message looks like this:

$GPGLL,3723.2475,N,12158.3416,W,161229.487,A,A*41

This sentence has the structure shown in Table 11.1.

$ Starts the sentence

GPGLL The “talker,” GP, and the type of message, GLL
3723.2475 Latitude, 37°23.2475

N North of the equator

12158.3416 | Longitude, 121°58.3416

W West of the 0° meridian

161229.487 | The timestamp in UTC: 16:12:29.487

A Status, A=valid, V=not valid

A Mode, A=Autonomous, D=DGPS, E=DR

* Ends the sentence, starts the checksum

41 Hexadecimal checksum of the text (excluding the $ and * characters)

Table 11.1: Example GPS Sentence

With a few exceptions, all the messages from a GPS will have a similar pattern. The exceptional

messages will start with !, and our design should quietly ignore them.
When building IoT devices, we need to be aware of two complicating factors:

1. Things aren’t very reliable, meaning our software must be prepared for broken or incomplete

messages.

2. The devices are tiny and some common Python techniques that work on a large, general-
purpose laptop computer won’t work well in a tiny Circuit Playground Express chip with

only 32K of memory.

What we need to do, then, is to read and validate the message as the bytes arrive. This saves time
(and memory) when ingesting data. Because there’s a defined upper bound of 82 bytes for these GPS

messages, we can use Python bytearray structures as a place to process the bytes of a message.

The process for reading a message has a number of distinct states. The following state transition

diagram shows the available state changes:

Chapter 11 345

waiting for $

zero checksum

on"$"

update checksum

on"$"

on "$"

update checksum

on"$" on "*"

A

checksum

after 2 chars

Figure 11.8: State transitions to parse NMEA sentences

We start in a state of waiting for the next $. As noted previously, it’s best to assume that IoT devices
have loose wires and power problems. (Some people can solder really well, so unreliability may not

be as common for them as it is for the authors.)

Once we’ve received the $, we’ll transition to a state of reading the five-character header. If, at any
time, we get another $, it means we lost some bytes somewhere; the message we were working on
was incomplete, and we need to start over again. Once we have all five characters with the message
name, we can transition to reading the message body. This will have up to 73 more bytes. When
we receive a *, it tells us we’re at the end of the body. Again, if we see a $ along the way, it means

something’s wrong and we should restart.

346 Common Design Patterns

The final two bytes (after the *) represent a hexadecimal value that should equal the computed
checksum of the preceding message (header and body). If the checksum is good, the message can be
used by the application. There will be one or more “whitespace” characters — usually the carriage

return and newline characters — at the end of the message.

We can imagine each of these states as an extension of the following class:

class NMEA_State:
def __init__ (self, message: "Message") -> None:
self.message = message

def feed_byte(self, input: int) -> "NMEA_State":
return self

def valid(self) -> bool:
return False

def __repr_ (self) -> str:
return f"{self.__class__.__name__}({self.message})"

We’ve defined each state to work with a Message object. Some reader object will feed a byte to the
current state, which will do something with the byte (usually save it) and return the next state. The
exact behavior depends on the byte received; for example, most states will reset the message buffer
to empty and transition to the Header state when they receive a $. Most states will return False for
the valid() function. One state, however, will validate a complete message, and possibly return

True for the valid() function. This only happens when the checksum is correct.

For the purists, the class name doesn’t strictly follow PEP-8. It’s challenging to include abbreviations
or acronyms and keep a properly camel-cased name. It seems like NmeaState isn’t as clear. While a
compromise class name might be NMEAState, the clash between abbreviations and class name seems
confusing. We prefer to cite “A foolish consistency is the hobgoblin of little minds...” in this specific
case. Keeping the class hierarchy internally consistent is more important than the full PEP-8 level

of consistency.

The Message object is a wrapper around two bytearray structures where we accumulate the content

of the message:

Chapter 11 347

class Message:
def _ _init_ (self) -> None:
self.body = bytearray(80)
self.checksum_source = bytearray(2)
self.body_len = 0
self.checksum_len = 0

self.checksum_computed = 0
def reset(self) -> None:
self.body_len = 0
self.checksum_len = 0
self.checksum_computed = 0

def body_append(self, input: int) -> int:
self.body[self.body_len] = input
self.body_len += 1
self.checksum_computed A= input
return self.body_len

def checksum_append(self, input: int) -> int:
self.checksum_source[self.checksum_len] = input
self.checksum_len += 1
return self.checksum_len

@property
def valid(self) -> bool:
return (
self.checksum_len ==
and int(self.checksum_source, 16) == self.checksum_computed

This definition of the Message class encapsulates much of what’s important about each sentence
that comes from the GPS device. We defined a method, body_append(), for accumulating bytes
in the body, and accumulating a checksum of those bytes. In this case, the A operator is used to
compute the checksum. This is a real Python operator; it’s the bit-wise exclusive OR. An exclusive
OR, XOR, means “one or the other but not both.” You can see it in action with an expression like
bin(ord(b'a') A oxd(b'z')). The bits in b’a’ are 0b1100001. The bits in b’z are #b1111010
Applying “one or the other but not both” to the bits, the XOR is 0b0011011.

Here’s the reader that builds valid Message objects by undergoing a number of state changes as

bytes are received:

348 Common Design Patterns

from typing import Iterable, Iterator, cast

class Reader:
def __init_ (self) -> None:
self.buffer = Message()
self.state: NMEA_State = Waiting(self.buffer)

def read(self, source: Iterable[bytes]) -> Iterator[Message]:
for byte in source:
self.state = self.state.feed_byte(cast(int, byte))
if self.buffer.valid:
yield self.buffer
self.buffer = Message()
self.state = Waiting(self.buffer)

The initial state is an instance of the Waiting class, a subclass of NMEA_State. The read() method
consumes one byte from the input, and then hands it to the current NMEA_State object for processing.
The state object may save the byte or may discard it, the state object may transition to another state,
or it may return the current state. If the state’s valid() method is True, the message is complete,

and we can yield it for further processing by our application.

Note that we’re reusing a Message object’s byte arrays until it’s complete and valid. This avoids
allocating and freeing a lot of objects while ignoring incomplete messages on a noisy line. This is
not typical for Python programs on large computers. In some applications, we don’t need to save
the original message, but only need to save the values of a few fields, further reducing the amount

of memory used.

To reuse the buffers in the Message object, we need to make sure it’s not part of any specific State
object. We’ve made the current Message object part of the overall Reader, and provided the working

Message object to each State as an argument value.

Now that we’ve seen the context, here are the classes to implement the various states for an
incomplete message. We'll start with the state of waiting for the initial $ to begin a message. When
a $ is seen, the parser transitions to a new state, Header. Otherwise, it ignores the character. The

class definition looks like this:

Chapter 11 349

class Waiting(NMEA_State):
def feed_byte(self, input: int) -> NMEA_State:
if input == ord(b"$"):
return Header(self.message)
return self

When we’re in the Header state, we’ve seen the $, and we’re waiting for the five characters that
identify the “talker” (GP) and the sentence type (GLL). We’ll accumulate bytes until we get five of
them, and then transition to the Body state. The presence of a $ in the input tells us bytes were lost,

and we need to begin again with a new message’s header. It looks like this:

class Header (NMEA_State):
def __init__ (self, message: "Message") -> None:
self.message = message
self.message.reset()

def feed_byte(self, input: int) -> NMEA_State:
if input == oxd(b"$"):
return Header(self.message)
size = self.message.body_append(input)
if size ==
return Body(self.message)
return self

The Body state is where we accumulate the bulk of the message. For some applications, we may
want to apply additional processing on the header and transition back to waiting for headers when
we receive a message type we don’t want. This can shave off a little bit of processing time when

dealing with devices that produce a lot of data.

When the * arrives, the body is complete, and the next two bytes must be part of the checksum.

This means transitioning to the Checksum state:

class Body(NMEA_State):
def feed_byte(self, input: int) -> NMEA_State:
if input == ord(b"$"):
return Header(self.message)
if input == oxd(b"*"):
return Checksum(self.message)
self.message.body_append(input)

350 Common Design Patterns

return self

The Checksum state is similar to accumulating bytes in the Header state: we’re waiting for a specific
number of input bytes. After the checksum, most messages are followed by ASCII r and n characters.
If we receive either of these, we transition to an End state where we can gracefully ignore these

excess characters:

class Checksum(NMEA_State):
def feed_byte(self, input: int) -> NMEA_State:
if input == oxd(b"$"):
return Header(self.message)
if input in {ord(b"\n"), ord(b"\xr")}:
Incomplete checksum... Will be invalid.
return End(self.message)
size = self.message.checksum_append(input)
if size == 2:
return End(self.message)
return self

The End state has an additional feature: it overrides the default valid() method. For all other states,
the valid() method is False. Once we’ve received a complete message, this state’s class definition
changes the validity rule: we now depend on the Message class to compare the computed checksum

with the final checksum bytes to tell us if the message is valid:

class End(NMEA_State):
def feed_byte(self, input: int) -> NMEA_State:
if input == ord(b"$"):
return Header(self.message)
elif input not in {ord(b"\n"), orxd(b"\r")}:
return Waiting(self.message)
return self

def valid(self) -> bool:
return self.message.valid

This state-oriented change in behavior is one of the best reasons for using this design pattern.
Instead of a complex set of if conditions to decide if we have a complete message and the message

has all the right parts and punctuation marks, we’ve refactored the complexity into a number of

Chapter 11 351

individual states and the rules for transition from state to state. This leads us to only checking
validity when we’ve received $, five characters, a body, *, two more characters, and confirmed the

checksum is correct.

Here’s a test case to show how this works:

>>> message = b'"'
.. $GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M,,,,0000*18
. $GPGLL,3723.2475,N,12158.3416,W,161229.487,A,A*41
>>> rdr = Reader()
>>> result = list(rdr.read(message))
>>> result
[Message (bytearray(b'GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, ,

bytearray(b'18'), computed=18),
Message(bytearray(b'GPGLL,3723.2475,N,12158.3416,W,161229.487,A,A"),
bytearray(b'41l'), computed=41)]

>>> result[@] .message()
b'$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, ,,,0000*18"
>>> result[1] .message()
b'$GPGLL,3723.2475,N,12158.3416,W,161229.487 ,A,A*41"

We’ve copied two example sentences from the SIRF NMEA Reference Manual, revision 1.3, to be sure
our parsing was correct. See https://www.sparkfun.com/products/13750 for more information
on GPS IoT devices. See http://aprs.gids.nl/nmea/ for additional examples and details. Feel free

to try sentences with bad headers, and bad checksums.

It’s often helpful to use state transitions when parsing complex messages because we can refactor

the validation into individual state definitions and state transition rules.

State versus Strategy
TheState pattern looks very similar to the Strategy pattern; indeed, the UML diagrams for the

two are identical. The implementation, too, is identical. We could even have written our states as
first-class functions instead of wrapping them in objects, as was suggested in the section on the

Strategy pattern earlier in this chapter.

These two patterns are similar because they both delegate work to other objects. This decomposes
a complex problem into several closely related but simpler problems. The result is a composition of

distinct objects.

https://www.sparkfun.com/products/13750
http://aprs.gids.nl/nmea/

352 Common Design Patterns

The Strategy pattern is used to choose an algorithm at runtime; generally, only one of those algo-
rithms is going to be chosen for a particular use case. The idea here is to provide an implementation
choice at runtime, as late in the design process as possible. Strategy class definitions are rarely

aware of other implementations; each strategy generally stands alone.

The State pattern, on the other hand, is designed to allow switching between different states
dynamically, as some process evolves. In our example, the state changed as bytes were consumed
and an evolving set of validity conditions were satisfied. State definitions are generally defined as a

group with an ability to switch among the various state objects.

To an extent, the End state used to parse an NMEA message has both State pattern features and
Strategy pattern features. Because the implementation of the valid() method is different from

other states, this reflects a different strategy for determining the validity of a sentence.

The Singleton pattern

The Singleton pattern is a source of some controversy; many have accused it of being an anti-pattern,
a pattern that should be avoided, not promoted. In Python, if someone is using the Singleton pattern,
they’re almost certainly doing something wrong, probably because they’re coming from a more

restrictive programming language.

So, why discuss it at all? The basic idea behind the Singleton pattern is to allow exactly one instance
of a certain object to exist. A Python example of this is the None object, the one — and only —

instance of the NoneType.

Generally, when a singleton class is used, each collaborator requests an instance of the class. The
class makes sure that the one-and-only instance is always returned. The UML diagram doesn’t fully

describe it, but here it is for completeness:

Singleton

-static instance: "Singleton"

+get_instance(): "Singleton"

Figure 11.9: Singleton pattern in UML

In some OO programming environments, singletons are enforced by making the constructor private
(so no one can create additional instances of it), and then providing a static method to retrieve the

single instance. This method creates a new instance the first time it is called, and then returns that

Chapter 11 353

same instance for all subsequent calls.

Singleton implementation

Python doesn’t have private constructors, but for this purpose, we can try to use the __new__()

class method to ensure that only one instance is ever created:

from typing import Any

class OneOnly:
_singleton = None
def __new__(cls, *args: Any, **kwargs: Any) -> "OneOnly":
if not cls._singleton:
cls._singleton = super()
return cls._singleton

new__(cls, *args, **kwargs)

When __new__() is called, it normally constructs a new instance of the requested class. This
replacement method first checks whether our singleton instance has been created; if not, we create
it using a super call. Note that there are potential issues with thread safety here, and we're assuming
a single-threaded application. Whenever the constructor on OneOnly is called, it always returns the

exact same instance:

>>> ol OneOnly ()
>>> 02 OneOnly ()
>>> 0l == 02

True

>>> id(ol) == id(02)

True

The two objects have the same value for the id() function; thus, they are the same object. This
particular implementation isn’t very transparent, since it’s not obvious that the special method is

being used to create a singleton object.

We don’t actually need this kind of class. Python provides two built-in Singleton patterns we can

leverage. Rather than inventsomething hard to read, there are two built-in choices:

+ A Python module is a singleton. One import will create a module. All subsequent attempts
to import the module return the one-and-only singleton instance of the module. In places

where an application-wide configuration file or cache is required, make this part of a distinct

354 Common Design Patterns

module. Library modules like 1ogging, random, and even re have module-level singleton
caches. Because this offers the advantage of thread-safe operation, we’ll look at using

module-level variables next.

« A Python class definition can also be pressed into service as a singleton. A class can only be
created once in a given namespace. Consider using a class with class-level attributes as a
singleton object. This means defining methods with the @staticmethod decorator because

there will never be an instance created, and there’s no self variable.

To use module-level variables instead of a complex Singleton pattern, we instantiate the class after
we’ve defined it. We can improve our State pattern implementation from earlier on to use singleton
objects for each of the states. Instead of creating a new object every time we change states, we can

create a collection of module-level variables that are always accessible.

We’ll make a small but very important design change, also. In the preceding examples, each state
has a reference to the Message object that is being accumulated. This required us to provide
the Message object as part of constructing a new NMEA_State object. We used code like return
Body (self.message) to switch to a new state, defined by the Body class, while working on the

same Message instance.

If we don’t want to create (and recreate) state objects, we need to provide Message as an argument

to the relevant methods.

Here’s the revised NMEA_State class:
import abc

class NMEA_State(abc.ABC):
@staticmethod
def enter(message: "Message") -> None:
pass

@staticmethod
@abc.abstractmethod
def feed_byte(message: "Message", input: int) -> "type[NMEA_State]":

@staticmethod
def valid(message: "Message") -> bool:
return False

Chapter 11 355

This variant on the NMEA_State class doesn’t have any instance variables. All the methods work
with argument values passed in by a client; this makes them static methods. The class is a bundle of
related methods, and a singleton. Since static methods don’t process the internal state of an object,
there’s no self parameter, either. Parts of the reader will work with type [NMEA_State] — the class
object itself — instead of working with individual NMEA_State instances. Here are the individual

state definitions:

class Waiting(NMEA_State):
@staticmethod
def feed_byte(message: "Message", input: int) -> type[NMEA_State]:
if input == ord(b"$"):
return Header
return Waiting

class Header (NMEA_State):
@staticmethod
def enter(message: "Message") -> None:
message.reset()

@staticmethod
def feed_byte(message: "Message", input: int) -> type[NMEA_State]:
if input == ord(b"$"):
return Header
size = message.body_append(input)
if size == 5:
return Body
return Header

class Body(NMEA_State):
@staticmethod
def feed_byte(message: "Message", input: int) -> type[NMEA_State]:
if input == ord(b"$"):
return Header
if input == oxd(b"*"):
return Checksum
message.body_append(input)
return Body

class Checksum(NMEA_State):

356 Common Design Patterns

@staticmethod
def feed_byte(message: "Message", input: int) -> type[NMEA_State]:
if input == ord(b"$"):
return Header
if input in {ord(b"\n"), ord(b"\r")}:

Incomplete checksum... Will be invalid.
return End

size = message.checksum_append(input)

if size ==

return End
return Checksum

class End(NMEA_State):
@staticmethod
def feed_byte(message: "Message", input: int) -> type[NMEA_State]:
if input == oxd(b"$"):
return Header
elif input not in {ord(b"\n"), ord(b"\r")}:
return Waiting
return End

@staticmethod
def valid(message: "Message") -> bool:
return message.valid

The important feature here is that each state transition is simply the object class, a subclass of

NMEA_State, not an instance of the subclass. The type type [NMEA_State].

Note how the special message reset processing was refactored out of the Header class. In the version
where each state has an __init__ (), we can explicitly evaluate Message.reset() when entering
the Header state. Since we’re not creating new state objects in this design, we need a way to handle
the special case of entering a new state, and performing an enter () method one time only to do

initialization or setup. This requirement leads to a small change in the Reader class:

from typing import Iterable, Iterator, cast

class Reader:
def _ _init_ (self) -> None:
self.buffer = Message()

Chapter 11 357

self.state: type[NMEA_State] = Waiting

def read(self, source: Iterable[bytes]) -> Iterator[Message]:
for byte in source:
new_state = self.state.feed_byte(self.buffer, cast(int, byte))
if self.buffer.valid:
yield self.buffer
Ready for the next...
self.buffer = Message()
new_state = Waiting
if new_state != self.state:
self.state.exit() # A common extension
new_state.enter(self.buffer)
self.state = new_state

We don’t trivially replace the value of the self.state instance variable with the result of the
self.state.feed_byte() evaluation. Instead, we compare the previous value of self.state with
the next value, new_state, to see if there was a state change. When there is a state change, then we
need to evaluate enter() on the new state, to allow the state change to do any required one-time
initialization.

In this example, we aren’t wasting memory creating a bunch of new instances of each state object
that must later be garbage collected. Instead, we are reusing the Singleton state objects for each
piece of the incoming data stream. Even if multiple parsers are running at once, only these state
objects need to be used. The stateful message data is kept separate from the state processing rules

in each state object.

We’ve combined two patterns, each with different purposes. The State pattern covers how processing
is completed. The Singleton pattern covers how object instances are managed. Many software

designs involve numbers of overlapping and complementary patterns.

Recall

The world of software design is full of good ideas. The really good ideas get repeated and form
repeatable patterns. Knowing — and using — these patterns of software design can save the developer
from burning a lot of brain calories trying to reinvent something that’s been developed already. In

this chapter, we looked at a few of the most common patterns:

358 Common Design Patterns

« The Decorator pattern is used in the Python language to add features to functions or classes.
We can define decorator functions and apply them directly, or use the @ syntax to apply a

decorator to another function.

« The Observer pattern can simplify writing GUI applications. It can also be used in non-GUI
applications to formalize relationships between objects that change state, and objects that

display or summarize or otherwise use the state information.

« The Strategy pattern is central to a lot of object-oriented programming. We can decompose
large problems into containers with the data and strategy objects that help with processing
the data. The Strategy object is a kind of “plug-in” to another object. This gives us ways to
adapt, extend, and improve processing without breaking all the code we wrote when we

make a change.

« The Command pattern is a handy way to summarize a collection of changes that are applied
to other objects. It’s really helpful in a web services context where external commands arrive

from web clients.

+ The State pattern is a way to define processing where there’s a change in state and a change
in behavior. We can often push unique or special-case processing into state-specific objects,

leveraging the Strategy pattern to plug in state-specific behavior.

« The Singleton pattern is used in the rare cases where we need to be sure there is one and
only one of a specific kind of object. It’s common, for example, to limit an application to

exactly one connection to a central database.

These design patterns help us organize complex collections of objects. Knowing a number of
patterns can help the developer visualize a collection of cooperating classes, and allocate their
responsibilities. It can also help developers talk about a design: when they’ve both read the same

books on design patterns, they can refer to the patterns by name and skip over long descriptions.

Exercises

While writing the examples for this chapter, the authors discovered that it can be very difficult, and
extremely educational, to come up with good examples where specific design patterns should be
used. Instead of going over current or old projects to see where you can apply these patterns, as
we’ve suggested in previous chapters, it’s time to start thinking about the patterns and different
situations where they might come up. Try to think outside your own experiences. If your current

projects are in the banking business, consider how you’d apply these design patterns in a retail or

Chapter 11 359

point-of-sale application. If you normally write web applications, think about using design patterns

while writing a compiler.

Look at the Decorator pattern and come up with some good examples of when to apply it. Focus
on the pattern itself, not the Python syntax we discussed. It’s a bit more general than the actual
pattern. The special syntax for decorators is, however, something you may want to look for places

to apply in existing projects too.

What are some good areas to use the Observer pattern? Why? Think about not only how you’d
apply the pattern, but how you would implement the same task without using Observer. What do

you gain, or lose, by choosing to use it?

Consider the difference between the Stategy and State patterns. Implementation-wise, they look
very similar, yet they have different purposes. Can you think of cases where the patterns could be
interchanged? Would it be reasonable to redesign a State-based system to use Strategy instead, or

vice versa? How different would the design actually be?

In the image filler example, we suggested that the different fill algorithms are — essentially —
functions. Each is a Callable[[Image, Size], Image] function. This pulls one redundant line
of code out of the definition of the make_background() function: the line that reads an image file
from a Path. The rest of the make_background() function can be renamed to be a function that
transforms and Image and size to another Image. After making this change, the resizer() class
also needs some changes. How do these two implementations compare? Which seems more clear?

Which seems easier to extend and customize?

In the dice-rolling example, we parsed a simple expression to create a few commands. There
are more options possible. See Roll20 Dice Reference (https://help.rol120.net/hc/en-us/axr
ticles/360037773133-Dice-Reference#DiceReference-Rol120DiceSpecif) for some really
sophisticated syntax for describing dice and dice games. To implement this, there are two changes
that need to be made. First, design the command hierarchy for all of these options. After that,
write a regular expression to parse a more complex dice-rolling expression and execute all of the

commands present.

We’ve noted that Singleton objects can be built using Python module variables. It’s sometimes
helpful to compare the performance of the two different NMEA message processors. If you don’t
have a GPS chip with a USB interface laying around, you can search the internet for NMEA example
messages to parse. http://aprs.gids.nl/nmea/ is a good source of examples. There’s a trade-off

question between the potential confusion of module variables and the performance of the application.

https://help.roll20.net/hc/en-us/articles/360037773133-Dice-Reference#DiceReference-Roll20DiceSpecif
https://help.roll20.net/hc/en-us/articles/360037773133-Dice-Reference#DiceReference-Roll20DiceSpecif
http://aprs.gids.nl/nmea/

360 Common Design Patterns

It’s helpful to have performance data to support the lessons you’ve learned.

Summary

This chapter discussed several common design patterns in detail, with examples and UML diagrams.
The Decorator pattern is often implemented using Python’s more generic decorator syntax. The
Observer pattern is a useful way to decouple events from actions taken on those events. The Strategy
pattern allows different algorithms to be chosen to accomplish the same task. The Command pattern
helps us design active classes that share a common interface but carry out distinct actions. The
State pattern looks similar to the Strategy pattern but is used instead to represent systems that can
move between different states using well-defined actions. The Singleton pattern, popular in some

statically typed languages, is almost always an anti-pattern in Python.

In the next chapter, we’ll wrap up our discussion of design patterns.

12

Advanced Design Patterns

In this chapter, we will introduce several more design patterns. Once again, we’ll cover the canonical
examples as well as any common alternative implementations in Python. We’ll be discussing the

following:
« The Adapter pattern
« The Fagade pattern
« Lazy initialization and the Flyweight pattern
« The Abstract Factory pattern
« The Composite pattern
« The Template pattern

Consistent with the practice in Design Patterns: Elements of Reusable Object-Oriented Software, we’ll

capitalize the pattern names.

We’ll begin with the Adapter pattern. This is often used to provide a needed interface around an

object with a design that doesn’t — quite — fit our needs.

362 Advanced Design Patterns

The Adapter pattern

Unlike most of the patterns we reviewed in the previous chapter, the Adapter pattern is designed
to interact with existing code. We would not design a brand new set of objects that implement
the Adapter pattern. Adapters are used to allow two preexisting objects to work together, even if
their interfaces are not compatible. Like the display adapters that allow you to plug your Micro
USB charging cable into a USB-C phone, an adapter object sits between two different interfaces,
translating between them. The adapter object’s sole purpose is to perform this translation. Adapting
may entail a variety of tasks, such as converting arguments to a different format, rearranging the

order of arguments, calling a differently named method, or supplying default arguments.

In structure, the Adapter pattern is similar to a simplified Decorator pattern. A decoration for a
class typically provides the same interface for the class it wraps, whereas adapters map between

two different interfaces. This is depicted in UML form in the following diagram:

Client

Y
Adapter

+load_data(path)

Y
Implementation

+read_raw_data(path)
+parse_raw_data(row)
+create_useful_object(mapping)

Figure 12.1: Adapter pattern

Here, a client object, an instance of Client, needs to collaborate with another class to do something
useful. In this example, we’re using load_data() as a concrete example of a method that requires

an adapter.

We already have this perfect class, named Implementation, that does everything we want (and to
avoid duplication, we don’t want to rewrite it!). This perfect class has one problem: it requires a
complex sequence of operations using methods called read_raw_data(), parse_raw_data(), and

create_useful_object(). The Adapter class implements an easy-to-use load_data() interface

Chapter 12 363

that hides the complexity of the existing interface provided by the Implementation class.

The advantage of this design is that the code that maps from the hoped-for interface to the actual
interface is all in one place, the Adapter class. The alternative would require putting the code into
the client, cluttering it up with possibly irrelevant implementation details. If we had multiple kinds
of clients, we’d have to perform the complex load_data() processing in multiple places whenever

any of those clients needed to access the Implementation class.

An Adapter example

Imagine we have the following pre-existing class, which takes string timestamps in the format

HHMMSS . S and calculates useful floating-point intervals from those strings:

class TimeSince:

nan

"""Expects time as six digits, no punctuation.

def parse_time(self, time: str) -> tuple[float, float, float]:
return (
float(time[0:2]),
float(time[2:4]),
float(time[4:]),

def __init_ (self, starting_time: str) -> None:
self.hr, self.min, self.sec = self.parse_time(starting_time)
self.start_seconds = ((self.hr * 60) + self.min) * 60 + self.sec

def interval(self, log_time: str) -> float:
log_hr, log_min, log_sec = self.parse_time(log_time)
log_seconds = ((log_hr * 60) + log_min) * 60 + log_sec
return log_seconds - self.start_seconds

This class handles string to time-interval conversion. Since we have this class in the application

already, it has unit test cases and works nicely.

Here’s an example showing how this class works:

>>> ts = TimeSince("000123") # Log started at 00:01:23
>>> ts.interval("020304")

7301.0
>>> ts.interval ("030405")

364 Advanced Design Patterns

10962.0

Working with these unformatted times is a little awkward, but a number of Internet of Things
(IoT) devices provide these kinds of time strings, separated from the rest of the date. For example,
look at the NMEA 0183 format messages from a GPS device, where dates and times are unformatted

strings of digits.

We have an old log from one of these devices, apparently created years ago. We want to analyze
this log for the sequence of messages that occur after each ERROR message. We'd like the exact

times, relative to the ERROR, as part of our root cause problem analysis.

Here’s some of the log data we’re using for testing:

>>> data = [
("00@123", "INFO", "Gila Flats 1959-08-20"),
("00@142", "INFO", "test block 15"),
("004201", "ERROR", "intrinsic field chamber door locked"),
(
(

"004210.11", "INFO", "generator power active"),
"@04232.33", "WARNING", "extra mass detected")

It’s difficult to compute the time interval between the ERROR and the WARNING message. It’s not
impossible; many of us have enough fingers to do the computation. But it would be better to show
the log with relative times instead of absolute times. Here’s an outline of the log formatter we’'d

like to use. This code, however, has a problem that we’ve marked with ??7?:

class LogProcessor:
def __init_ (self, log_entries: list[tuple[str, str, str]]) -> None:
self.log_entries = log_entries

def report(self) -> None:
first_time, first_sev, first_msg = self.log_entries[0]
for log_time, severity, message in self.log_entries:
if severity == "ERROR":
first_time = log_time
interval = ### Need to compute an interval ???
print(f"{interval:8.2f} | {severity:7s} {message}")

This LogProcessor class seems like the right thing to do. It iterates through the log entries, resetting

Chapter 12 365

the first_time variable on each occurrence of an ERROR line. This makes sure that the log shows
offsets from the error, saving us from having to do a lot of math to work out exactly what happened

and when.

But, we have a problem. We’d really like to reuse the TimeSince class. However, it doesn’t simply

compute an interval between two values. We have several options to address this scenario:

« We could rewrite the TimeSince class to work with a pair of time strings. This runs a small
risk of breaking something else in our application. We sometimes call this additional breakage
the splash radius of a change — how many other things get wet when we drop a boulder
into the swimming pool? The Open/Closed design principle (one of the SOLID principles;
see Clean Code in Python (https://subscription.packtpub.com/book/application_d
evelopment/9781788835831/4) for more background) suggests a class should be open to
extension but closed to this kind of modification. If this class was downloaded from PyPI, we
may not want to change its internal structure because then we wouldn’t be able to use any

subsequent releases. We need an alternative to tinkering inside another class.

« We could use theclass as it is, and whenever we want to calculate the intervals between an
ERROR and subsequent log lines, we create a new TimeSince object. This is a lot of object
creation. Imagine we have several log analysis applications, each looking at different aspects
of the log messages. Making a change across all these applications means having to go
back and fix all of the places where these TimeSince objects were created. Cluttering up
the LogProcessor class with details of how the TimeSince class works violates the Single
Responsibility design principle. Another principle, Don’t Repeat Yourself (DRY), seems to

apply in this case, also.

« Instead, we can add an adapter that connects the needs of the LogProcessor class with the

methods available from the TimeSince class.

The Adapter solution introduces a new class that offers the interface required by the LogProcessor
class. It consumes the interface offered by the TimeSince class. It allows for independent evolution

of the two classes, leaving them closed to modification, but open to extension. It looks like this:

class IntervalAdapter:
def _ _init_ (self) -> None:
self.ts: TimeSince | None = None

def time_offset(self, start: str, now: str) -> float:

https://subscription.packtpub.com/book/application_development/9781788835831/4
https://subscription.packtpub.com/book/application_development/9781788835831/4

366 Advanced Design Patterns

if self.ts is None:
self.ts = TimeSince(start)
else:
h_m_s = self.ts.parse_time(start)
if h_m_s != (self.ts.hr, self.ts.min, self.ts.sec):
self.ts = TimeSince(start)
return self.ts.interval(now)

This adapter creates a TimeSince object when it’s needed. If there is no TimeSince, it has to create
one. If there is an existing TimeSince object, and it uses the already established start time, the
TimeSince instance can be reused. When the LogProcessor class needs to shift the focus of the

analysis to a new error message, then a new TimeSince needs to be created.

Here’s the final design for the LogProcessor class, using the IntervalAdapter class:

class LogProcessor:
def __init_ (self, log_entries: list[tuple[str, str, str]]) -> None:
self.log_entries = log_entries
self.time_convert = IntervalAdapter()

def report(self) -> None:
first_time, first_sev, first_msg = self.log_entries[0]
for log_time, severity, message in self.log_entries:
if severity == "ERROR":
first_time = log_time
interval = self.time_convert.time_offset(first_time, log_time)
print(f"{interval:8.2f} | {severity:7s} {message}")

We created an IntervalAdapter() instance during initialization. Then we used this object to
compute each time offset. This lets us reuse the existing TimeSince class without any modification

to the original class, and it leaves the LogProcessor uncluttered by details of how TimeSince works.

We can also tackle this kind of design through inheritance. We could extend TimeSince to add the
needed method to it. This inheritance alternative isn’t a bad idea, and it illustrates the common
situation where there’s no single “right” answer. In some cases, we need to write out the inheritance

solution and compare it with the adapter solution to see which one is easier to explain.

It is often possible to use a function as an adapter. While this doesn’t obviously fit the traditional
design of the Adapter class design pattern, it’s a distinction with little practical impact: an instance

of a class with the __call__ () method is a callable object, indistinguishable from a function. A

Chapter 12 367

function can be a perfectly good Adapter; Python doesn’t require everything to be defined in classes.

The distinction between Adapter and Decorator is small but important. An Adapter often extends,
modifies, or combines more than one method from the class(es) being adapted. A Decorator, however,
generally avoids profound changes, keeping a similar interface for a given method, adding features
incrementally. As we saw in Chapter 11, a Decorator should be viewed as a specialized kind of

Adapter.

Using an Adapter class is a lot like using a Strategy class; the idea is that we might make changes
and need a different Adapter someday. The principal difference is that Strategies are often chosen

at runtime, whereas an Adapter is a design-time choice and changes very slowly.

The next pattern we’ll look at is similar to an Adapter, as it also wraps functionality inside a new
container. The difference is the complexity of what is being wrapped. A Facade often contains

considerably more complex structures.

The Facade pattern

The Facade pattern is designed to provide a simple interface to a complex system of components. It
allows us to define a new class that encapsulates a typical usage of the system, thereby avoiding a
design that exposes the many implementation details hiding in the object collaboration. Any time
we want access to common or typical functionality, we can use a single object’s simplified interface.
If another part of the project needs access to more complete functionality, it is still able to interact

with the components and individual methods directly.

The UML diagram for the Facade pattern is really dependent on the subsystem, shown as a package,
Big System, but in a cloudy way it looks like this:

Facade

+simple_task(
+other_simple_task(

Big System
AnotherComponent ComplexComponent
+another_part() +some_part()

Figure 12.2: The Facade pattern

368 Advanced Design Patterns

The Facade pattern is, in many ways, like the Adapter pattern. The primary difference is that a
Facade tries to abstract a simpler interface out of a complex one, while an Adapter only tries to

map one existing interface to another.

A Facade example
The imagesfor this book were made with PlantUML (https://plantuml.com). Each diagram starts
as a text file and needs to be converted to the PNG file that’s part of the text. This is a two-step

process and we use the Facade pattern to combine the two processes.

The first part is locating all of the UML files. This is a walk through the directory tree, finding all
files with names ending in .uml. We also look inside the file to see if there are multiple diagrams

named inside the file.

import re
from pathlib import Path
from typing import Iterator

class FindUML:
def __init_ (self, base: Path) -> None:
self.base = base
self.start_pattern = re.compile(r"@startuml *(.*)")

def uml_file_iter(self) -> Iterator[tuple[Path, Pathl]:
for source in self.base.glob("**/*.uml"):
if any(n.startswith(".") for n in source.parts):
continue
body = source.read_text()
for output_name in self.start_pattern.findall(body):
if output_name:
target = source.parent / output_name
else:
target = source.with_suffix(".png")
yield (source.relative_to(self.base),
target.relative_to(self.base))

The FindUML class requires a base directory. The uml_file_iter () method walks the entire directory
tree, using the Path.glob () method. It skips over any directories with names that start with .; these
are often used by tools like tox, mypy, or git, and we don’t want to look inside these directories.

The remaining fileswill have @startuml lines in them. Some will have a line that names multiple

https://plantuml.com

Chapter 12 369

output files. Most of the UML files don’t create multiple files. The self.start_pattern regular

expression will capture the name, if one is provided. The iterator yields tuples with two paths.

Separately, we have a class that runs the PlantUML application program as a subprocess. When
Python is running, it’s an operating system process. We can, using the subprocess module, start
child processes that run other binary applications or shell scripts. We’ll break this into two parts

because the initialization involves a file-system search. Here’s the first part:

from pathlib import Path
import subprocess

class PlantUML:
local_dir = Path.cwd()

def __init_ (

self,
plantjar: str | Path = "plantuml-1.2024.7.jaxr",
venv_name: str = ".venv"
) -> None:
def find_first(name: str | Path) -> Path:
places = [

self.local_dir,

self.local_dir / venv_name,
1
places += Path.cwd().parents
for place in places:

if (path := place / name).exists():

return path

raise FileNotFoundError(f"could not find {plantjar}")

match plantjar:
case Path() as path if path.is_absolute():
self.plantjar = path
case Path() as path if not path.is_absolute():
self.plantjar = find_first(path)
case str() as name:
self.plantjar = find_first(name)

Here’s the more interesting part, running the PlantUML application:

370 Advanced Design Patterns

def process(self, source: Path) -> None:
env: dict[str, str] = {
Rarely needed...
"GRAPHVIZ_DOT": str(Path("/")/"to"/"graphviz"/"dot"),
}
command = ["java", "-jar", str(self.plantjar), "-progress",
str(source)]
subprocess.run(command, env=env, check=True)

This PlantUML class depends on finding the needed Java JAR file. This means — as preparation — we
need to download the plantuml. jar file, and place it somewhere. The __init__() method searches
all the usual locations for a JAR file, including a conda virtual environment, a virtual environment
defined in your home directory, a virtual environment defined in the project directory, and then, all

of the parent directories for the current working directory.

(Searching all the parents can seem a bit silly, but it’s often appropriate. The book is 14 separate
projects, all combined into one Git project repository. Since we don’t want the JAR file in the Git

repository, it’s in the parent of the parent of all 14 projects.)

The subprocess.run() function accepts the command-line arguments and any special environment
variables that need to be set. It will run the given command, with the given environment, and it

will check the resulting return code to be sure the program ran properly.

Separately, we can use these steps to find all the UML files and create the diagrams. Because the
interface between file finding and subprocess running is a bit awkward, a class that follows the

Facade pattern helps combine the two features.

class GeneratelImages:
def __init_ (self, base: Path, verbose: int = @) -> None:
self.finder = FindUML (base)
self.painter = PlantUML()
self.verbose = verbose

def make_all_images(self) -> None:
for source, target in self.finder.uml_file_iter():
if not target.exists() oxr source.stat().st_mtime >
target.stat().st_mtime:
print(f"Processing {source} -> {target}")
self.painter.process(source)
else:

Chapter 12 371

if self.verbose > 0:
print(f"Skipping {source} -> {target}")

The GenerateImages class is a facade that combines features of the FindUML and the PlantUML
classes. It uses the FindUML.uml_file_iter() method to locate source files and output image files.
It checks the modification times of these files to avoid processing them if the image is newer than
the source. (The stat().st_mtime is pretty obscure; it turns out the stat() method of a Path
provides a lot of file status information, and the modification time is only one of many things we

can find about a file.)

If the .uml file is newer, it means one of the authors changed it, and the images need to be regenerated.

The main script to do this is now delightfully simple:

def main() -> None:
g = GenerateImages(Path.cwd())
g.make_all_images()

if __name__ == "__main__":
main()

This example shows one of the important ways Python can be used to automate things. We broke
the process into steps that we could implement in a few lines of code. Then we combined those
steps, wrapping them in a Fagade. Another, more complex application can use the Facade without
worrying deeply about how it’s implemented. What’s essential here is that almost any instance
of a class actiing as a wrapper to conceal more complex processing is a Facade over that complex

processing.

Although it is rarely mentioned by name in the Python community, the Fagade pattern is an integral
part of the Python ecosystem. Because Python emphasizes language readability, both the language
and its libraries tend to provide easy-to-comprehend interfaces for complicated tasks. For example,
for statements, 1ist comprehensions, and generators are all facades for a more complicated iterator
protocol. The defaultdict implementation is a facade that abstracts away annoying edge cases

when a key doesn’t exist in a dictionary.

The third-party requests or httpx libraries are both powerful facades over the complications of

HTTP processing. These packages include numerous other patterns; they’re not simply examples of

372 Advanced Design Patterns

the Facade pattern. The HTTP protocol is a conceptual facade over the underlying socket protocol

for making requests and handling responses.

A Facade pattern conceals complexity. Sometimes, we want to avoid duplicating data. The next
design pattern can help optimize storage when working with large volumes of data. It’s particularly

helpful on very small computers, typical for Internet of Things applications.

The Flyweight pattern

The Flyweight pattern is a memory optimization pattern. Novice Python programmers tend to
ignore memory optimization, assuming the built-in garbage collector will take care of it. Relying
on the built-in memory management is the best way to start. Indeed, for the most part, Python lets

us ignore memory management.

There are a few cases where memory limitations surface. One example is very large data science
applications. In these applications, memory constraints can become barriers, and more active
measures need to be taken. The other common example is very small Internet of Things devices;

for these, memory management can also be helpful.

The Flyweight pattern ensures that objects that share a state can use the same memory for their
shared state. It is normally implemented only after a program has demonstrated memory problems.
Bear in mind that premature optimization is the most effective way to create a program that is too
complicated to maintain. First, build it the obvious way; if memory problems surface, then start

refactoring.

In some languages, a Flyweight design requires careful sharing of object references, avoiding
accidental object copying, and careful tracking of object ownership to ensure that objects aren’t
deleted prematurely. There are a lot of considerations to make sure memory is used safely. In
Python, everything is an object, and all objects work through consistent references. A Flyweight

design in Python is generally somewhat simpler than in other languages.
Let’s have a look at the following UML diagram for the Flyweight pattern in the next page.

Each Flyweight object has no specific state of its own. Any time it needs to perform an operation on
SpecificState, that state needs to be passed into the Flyweight by the calling code as an argument
value. Traditionally, the factory that returns an instance of a Flyweight class is a separate object;
its purpose is to return individual Flyweight objects, perhaps organized by a key or index of some
kind. It works like the Singleton pattern we discussed in Chapter 11; if the Flyweight object exists,

we return it; otherwise, we create a new one. In many languages, the factory is implemented, not

Chapter 12 373

Client
+massive_object : Massive

+something_useful(key)

FlyweightFactory

+getFlyweight() : Flyweight

Massive
+sharedState : Dict[key, SpecificState]

creates

Flyweight

+useful_work(specific_state)

SpecificState

Figure 12.3: The Flyweight pattern

as a separate object, but as a static method on the Flyweight class itself.

We can liken this to the way the World Wide Web has replaced a computer loaded up with data. In
the olden days, we would be forced to collect and index documents and files, filling up our local
computer with copies of source material. This used to involve transfers of physical media like
floppy disks and CDs. Now, we can — via a website — have a reference to the original data without
making a bulky, space-consuming copy. Because we are working with a reference to the source
data, we can read it easily on a mobile device. The Flyweight principle of working with a reference

to data has been a profound change in our access to information.

Unlike the Singleton design pattern, which only needs to return one instance of a class, a Flyweight
design may have multiple instances of the Flyweight classes. One approach is to store the items in
a dictionary and provide values to Flyweight objects based on the dictionary key. Another common
approach in some IoT applications is to leverage a buffer of items. On a large computer, allocating
and deallocating objects is relatively low-cost. On a small IoT computer, we need to minimize object

creation, which means leveraging Flyweight designs where a buffer is shared by objects.

374 Advanced Design Patterns

A Flyweight example in Python

We'll start with some concrete classes for an IoT device that works with GPS messages. We don’t
want to create a lot of individual Message objects with duplicate values taken from a source buffer;

instead, we want Flyweight objects to help save memory. This leverages two important features:

+ The Flyweight objects reuse bytes in a single buffer. This avoids data duplication in a small

computer.

« The Flyweight classes can have unique processing for the various message types. In particular,
the GPGGA, GPGLL, and GPRMC messages all have latitude and longitude information.
Even though the details vary by message, we don’t want to create distinct Python objects.
It’s a fair amount of overhead to handle the case when the only real processing distinction is

the location of the relevant bytes within a buffer.

Here’s the UML diagram:

Buffer MessageFactory
+List[bytes]

+getMessage(buffer: Buffer, start: int) -> Message

&

Message
+buffer: Buffer
+offset: int
+set_fields(buffer: Buffer, offset: int)
+fix() : Point
‘/tra\cts
Point
latitude: bytes GPGGA GPGLL GPRMC
N/S: bytes
longitude: bytes +fix(: Point +fix(: Point +fix(: Point
E/W: bytes

Figure 12.4: GPS messages UML diagram

Given a Buffer object with bytes read from the GPS, we can apply a MessageFactory to create
Flyweight instances of the various Message subclasses. Each subclass has access to the shared

Buffer object and can produce a Point object, but they have unique implementations reflecting the

Chapter 12 375

distinct structure of each message.

There’s an additional complication that is unique to Python. We can get into trouble when we have
multiple references to an instance of the Buffer object. After working with a number of messages,
we’ll have local, temporary data in each of the Message subclasses, including a reference to the

Buffer instance.

The situation might look as shown in the following diagram, which has the concrete objects and

their references:

Client

+Buffer
Buffer GPGGCA
0 ~~—/id = 140682444146048
68 | GPGLL buffer = Buffer
98[GPRMC offset = 0

Figure 12.5: Circular references

Some client application, shown as a Client object, has a reference to a Buffer instance. It read and
processed a bunch of GPS traffic using this buffer. Additionally, a specific GPGGA message instance
also has a reference to the Buffer object because offset 0 in the buffer had a GPGGA message.

Offsets 68 and 98 have other messages; these will also have references back to the Buffer instance.

Because the Buffer has a reference to a GPGGA Message object, and the Message also has a reference
back to the Buffer, we have a circular pair of references. When the client stops using the Buffer
instance, the reference count goes from four references to three. We cannot easily remove the

Buffer because it’s still used by Message objects.

We can solve this problem by taking advantage of Python’s weakref module. Unlike ordinary
(“strong”) references, a weak reference isn’t counted for the purposes of memory management. We
can have lots of weak references to an object, but once the last ordinary reference is removed, the
object can be removed from memory. This permits the client to start working with a new Buffer
object without having to worry about the old Buffer cluttering up memory. The number of strong
references goes from one to zero, allowing it to be removed. Similarly, each Message object could

have one strong reference from the Buffer, so removing the Buffer will also remove each Message.

Weak references are part of the foundation of the Python runtime. Consequently, they are an

376 Advanced Design Patterns

important optimization that surfaces in a few special cases. One of these optimizations is that we

can’t create a weak reference to a bytes object. The overhead would be painful.

In a few cases (like this) we need to create an Adapter for the underlying bytes object to transform

it into an object that can have weak references.

from collections.abc import Sequence, Iterator

class Buffer(Sequence[int]):
def __init_ (self, content: bytes) -> None:
self.content = content

def __len_ (self) -> int:
return len(self.content)

def __iter_ (self) -> Iterator[int]:
return iter(self.content)

@overload
def __getitem__(self, index: int) -> int:

@overload
def __getitem__(self, index: slice) -> bytes:

def __getitem__(self, index: int | slice) -> int | bytes:
return self.content[index]

This definition of a Buffer class doesn’t really contain a great deal of new code. We provided three
special methods, and all three delegated the work to the underlying bytes object. The Sequence

abstract base type provides a few methods for us, like index () and count().

The three definitions of the overloaded __getitem__() method is how we tell mypy of the important
distinction between an expression like buffer[i] and buffer[start: end]. The first expression
gets a single int item from the buffer, the second uses a slice and returns a bytes object. The final
non-overload definition of __getitem__() implements the two overloads by delegating the work

to the self.contents object, which handles this nicely.

Back in Chapter 11, we looked at using a state-based design to acquire and compute checksums.

This chapter takes a different approach to working with a large volume of rapidly arriving GPS

Chapter 12 377

messages.

Here’s a typical GPS sentence:

>>> TYaw =

Buffer(b"$GPGGA,170834,4124.8963,N,08151.6838,W,1,05,1.5,280.2,M,-34.0,M, ,*75")

The $ starts the sentence. The * ends the sentence. The characters after the * are the checksum
value. We'll ignore the two checksum bytes in this example, trusting that they are correct. Here’s

the abstract Message class with some common methods to help parse these GPS messages:

import abc
import weakref

class Message(abc.ABC):
def _ init_ (self) -> None:
self.buffer: weakref.ReferenceType[Buffer]
self.offset: int
self.end: int | None
self.commas: list[int]

def from_buffer(self, buffer: Buffer, offset: int) -> "Message":
self.buffer = weakref.ref(buffer)
self.offset = offset
self.commas = [offset]
self.end = None
for index in range(offset, offset + 82):
if buffer[index] == ord(b","):
self.commas.append(index)
elif buffer[index] == orxrd(b"*"):
self.commas.append(index)
self.end = index + 3
break
if self.end is None:
raise GPSError("Incomplete")
TODO: confirm checksum.
return self

def __getitem__(self, field: int) -> bytes:
if not hasattr(self, "buffer") oxr (buffer := self.buffer()) is None:
raise RuntimeError("Broken reference")

378 Advanced Design Patterns

start, end = self.commas[field] + 1, self.commas[field + 1]
return buffer[start:end]

The __init__ () method doesn’t actually do anything. We’ve provided a list of instance variables
with their types, but we don’t actually set them here. This is a way to alert mypy to what instance

variables are going to be set elsewhere in the class.

In the from_buffer () method, we create a weak reference to a Buffer instance using the weakref.ref ()
function. As noted previously, this special reference is not used to avoid tracking how many places
a Buffer object is used; it allows Buffer objects to be removed even if Message objects still have

old, stale references to them.

The from_buffer() method scans the buffer for “, " characters, making it easier to locate where
each field is. This can save some time if we need several fields. If we only need one or two fields,

this might be excessive overhead.

In the __getitem__() method, we de-reference the weak reference to track down the Buffer object.
Normally, when processing a Buffer, it’s in memory along with some Message objects. Evaluating
self.buffer() — calling the reference like a function — retrieves the ordinary reference we can
use in the body of the method. At the end of the __getitem__() method, the buffer variable is no

longer used, and the temporary reference vanishes.

A client application may have code like this:

while True:
buffer = Buffer(gps_device.read(1024))
process the messages in the buffer.

The buffer variable has an ordinary reference to a Buffer object. Ideally, this is the only reference.
Each time we execute this assignment statement, the old Buffer object will have zero references
and can be removed from memory. After this assignment statement, and before we evaluate the
from_buffer() method of a Message, an attempt to use the __getitem__() method of a Message

object will raise a RuntimeError exception.

If our application attempts to use a Message object’s __getitem__() method without having done
set_fields() first, that’s a serious, fatal bug. We’ve tried to make it obvious by crashing the
application. When we get to Chapter 13, we can use unit tests to confirm that the methods are used

in the proper order. Until then, we have to be sure we use __getitem__() correctly.

Chapter 12 379

Here’s the rest of the Message abstract base class, showing the methods required to extract a fix

from a message:

def get_fix(self) -> Point:
return Point.from_bytes(
self.latitude(), self.lat_n_s(), self.longitude(),
self.lon_e_w()

@abc.abstractmethod
def latitude(self) -> bytes:

@abc.abstractmethod
def lat_n_s(self) -> bytes:

@abc.abstractmethod
def longitude(self) -> bytes:

@abc.abstractmethod
def lon_e_w(self) -> bytes:

The get_fix () method delegates the work to four separate methods, each of which extracts one of

the many fields from the GPS message. We can provide subclasses like the following:

class GPGLL(Message):
def latitude(self) -> bytes:
return self[1]

def lat_n_s(self) -> bytes:
return self[2]

def longitude(self) -> bytes:
return self[3]

def lon_e_w(self) -> bytes:
return self[4]

This class will use the get_field() method, inherited from the Message class, to pick out the bytes

380 Advanced Design Patterns

for four specific fields in the overall sequence of bytes. Because the get_field() method uses a
reference to a Buffer object, we don’t need to duplicate the entire message’s sequence of bytes.

Instead, we reach back into the Buffer object to get the data, avoiding cluttering up memory.

We haven’t shown the Point object. It’s left as part of the exercises. It needs to convert strings of

bytes into useful floating-point numbers.

Here’s how we create a suitable Flyweight object, based on the message type in the buffer:

def message_factory(header: bytes) -> Message | None:
TODO: Add functools.lru_cache to save storage and time
if header == b"GPGGA":
return GPGGA()
elif header == b"GPGLL":
return GPGLL()
elif header == b"GPRMC":
return GPRMC()
else:
return None

If we’re looking at a recognized message, we create an instance of one of our Flyweight classes. We
left a comment suggesting another exercise: Use functools.1lru_cache to avoid creating Message

objects that are already available. Let’s look at how message_factory() works in practice:

>>> puffer = Buffer(
b"$GPGLL,3751.65,S,14507.36,E*77"

o)

>>> flyweight = message_factory(buffer[1l : 6])

>>> flyweight.__class__.__name__

'GPGLL'

>>> flyweight.from_buffer(buffer, @)

<gps_messages.GPGLL object at ...>

>>> flyweight.get_fix()

Point(latitude=-37.86083333333333, longitude=145.12266666666667)
>>> print(flyweight.get_fix())

(37°51.6500S, 145°07.3600E)

We've loaded up a Buffer object with some bytes. The message name is a slice of bytes in positions 1
to 6 of the buffer. The slice operation will create a small bytes object here. The message_factory()

function will locate one of our Flyweight class definitions, the GPGLL class. We can then use the

Chapter 12 381

from_buffer() method so the Flyweight can scan the Buffexr, starting from offset zero, looking for

“," bytes to locate the starting point and ending point for the various fields.

When we evaluate get_fix(), the GPGLL flyweight will extract four fields, convert the values to
useful degrees and return a Point object with two floating-point values. If we want to correlate
this with other devices, we might want to show a value that has degrees and minutes separated

from each other. It can be more helpful to see 37°51.6500S than 37.86083333333333.

Multiple messages in a buffer
Let’s stretch this example out a bit, to look at a buffer with a sequence of messages in it. We’'ll
put two GPGLL messages into a sequence of bytes. We’ll include explicit end-of-line whitespace

characters that some GPS devices include in the data stream.

>>> puffer_2 = Buffer(
b"$GPGLL,3751.65,S,14507.36,E*77\\r\\n"
b"$GPGLL,3723.2475,N,12158.3416,W,161229.487,A,A*41\\r\\n"

)
>>> start = 0
>>> flyweight = message_factory(buffer_2[start+l : start+6])
>>> p_1 = flyweight.from_buffer(buffer_2, start).get_fix()
>>> p_1
Point(latitude=-37.86083333333333, longitude=145.12266666666667)
>>> print(p_1)
(37°51.6500S, 145°07.3600E)

We've found the first GPGLL message, created a GPGLL object, and extracted the fix from the message.
The next message begins where the previous message ends. This lets us start at a new offset in the

buffer and examine a different region of bytes.

>>> flyweight.end

30

>>> next_start = buffer_2.index(ord(b"\$"), flyweight.end)
>>> pext_start

32

>>>

>>> p_2 = flyweight.from_buffer(buffer_2, next_start).get_fix()
>>> p_ 2

Point (latitude=37.387458333333335, longitude=-121.97236)

>>> print(p_2)

382 Advanced Design Patterns

(37°23.2475N, 121°58.3416W)

We’ve used the message_factory() function to create a new GPGLL object. Since the data from
the message isn’t in the object, we can reuse the previous GPGLL object. We can take out the
flyweight = line of code, and the results are the same. When we use the from_buffer() method,
we’ll locate a new batch of “, " characters. When we use the get_fix() method, we’ll get values

from a new place in the overall collection of bytes.

This implementation creates a few short strings of bytes to create a cacheable object for use by
message_factory(). It creates new float values when it creates a Point. It avoids slinging around
large blocks of bytes, however, by making the message processing objects reuse a single Buffer

instance.

Generally, using the Flyweight pattern in Python is a matter of making sure we have references
to the original data. Generally, Python avoids making implicit copies of objects; almost all object
creation is obvious, using a class name or perhaps comprehension syntax. One case where object
creation is not obvious is taking a slice from a sequence, like a buffer of bytes: when we use
bytes[start: end], this makes a copy of the bytes. Too many of these and our IoT device is out
of usable memory. A Flyweight design avoids creating new objects, and — in particular — avoids

slicing strings and bytes to create copies of the data.

Our example also introduced the weakref module. This isn’t essential for a Flyweight design, but it
can be helpful to identify objects that can be removed from memory. While the two are often seen

together, they’re not closely related.

The Flyweight pattern can have an enormous impact on memory consumption. It is common for
programming solutions that optimize CPU, memory, or disk space to result in more complicated
code than their unoptimized brethren. It is therefore important to weigh up the trade-offs when
deciding between code maintainability and optimization. When choosing optimization, try to use
patterns such as Flyweight to ensure any complexity introduced by optimization is confined to a

single (well-documented) section of the code.

Before we look at the Abstract Factory pattern, we’ll digress a bit, to look at another memory

optimization technique, unique to Python. This is the __slots__ magic attribute name.

Chapter 12 383

Memory optimization via Python's __slots__

If you have a lot of Python objects in one program, another way to save memory is through the
use of __slots__. This is a sidebar, since it’s not a common design pattern outside the Python
language. It is a helpful Python design pattern because it can shave a few bytes off an object that’s
used widely. Instead of a Flyweight design — where storage is intentionally shared — a slots design
creates objects with their own private data, but avoids Python’s built-in dictionary. Instead, there is
direct mapping from attribute name to a sequence of values, avoiding the rather large hash table

that is a part of every Python dict object.

Looking back at our previous example in this chapter, we avoided describing the Point object that
was created as part of the get_fix () method of each subclass of Message. Here’s one possible

definition of the Point class:

from math import radians, floor

class Point:
__slots__ = ("latitude", "longitude")

def __init_ (self, latitude: float, longitude: float) -> None:
self.latitude = latitude
self.longitude = longitude

def _ repr_ (self) -> str:
return f"Point(latitude={self.latitude},
longitude={self.longitude})"

@classmethod
def from_bytes(
cls,
latitude: bytes,
N_S: bytes,
longitude: bytes,
E_W: bytes,
) -> "Point":
lat_deg = float(latitude[:2]) + float(latitude[2:]) / 60
lat_sign = 1 if N_S.upper() == b"N" else -1
lon_deg = float(longitude[:3]) + float(longitude[3:]) / 6@
lon_sign = 1 if E_W.upper() == b"E" else -1
return Point(lat_deg * lat_sign, lon_deg * lon_sign)

384 Advanced Design Patterns

def _ str_ (self) -> str:
lat = abs(self.latitude)
lat_deg = floor(lat)
lat_min_sec = 60 * (lat - lat_deg)
lat_dir = "N" if self.latitude > 0 else "S"
lon = abs(self.longitude)
lon_deg = floox(lon)
lon_min_sec = 60 * (lon - lon_deg)

Each instance of a Point can have exactly two attributes with the names latitude and longitude.

The __init__() method sets these values and provides useful type hints for tools like mypy.

In most other respects, this class is the same as a class without __slots__. The most notable

difference is we cannot add attributes. Here’s an example, showing what exception is raised:

>>> p2 = Point(latitude=49.274, longitude=-123.185)
>>> p2.extra_attribute = 42
Traceback (most recent call last):

AttributeError: 'Point' object has no attribute 'extra_attribute' and no
__dict__ for setting new attributes

The extra housekeeping of defining the names of the slots can be helpful when our application
creates vast numbers of these objects. In those cases where an application is built on one or a
very small number of instances of a class, then the memory-saving from introducing __slots__is

negligible. This can be a slight performance boost from avoiding the dictionary overhead.

The memory savings can be profound. A list of about 5,600 GPS messages, using a conventional
class, occupies about 3.5 Mb of memory. Compare this with a list using __slots__ that only occupies
0.4 Mb. For this example, the __slots__ implementation uses about % of the storage. (Why 5,600
messages? The benchmark is based on a buffer size of 512 Kb of raw GPS output. This gives a

funny-looking number of messages.)

The @dataclass decorator can be used with a slots=True option to define __slots__automatically.

In some cases, adding this option can create a profound performance improvement.

It’s also possible to improve performance using a NamedTuple. This structure can be as effective
at saving memory as using __slots__ in a more general class definition. We looked at these in

Chapter 8.

Chapter 12 385

We've seen how to manage complexity by wrapping objects in a Facade. We’ve seen how to manage
memory use by using Flyweight objects that have little (or no) internal state. Next, we’ll look at

how we can create a variety of different kinds of objects using a factory.

The Abstract Factory pattern

The Abstract Factory pattern is appropriate when we have multiple possible implementations
of a system that depend on some configuration or platform detail. The calling code requests an
object from the Abstract Factory, not knowing exactly what class of object will be returned. The
underlying implementation returned may depend on a variety of factors, such as the current locale,

operating system, or local configuration.

Within the Python standard library, the pathlib module has the Path class that acts as an ab-
stract factory for concrete PosixPath and WindowsPath objects that have operating system-specific

features.

Other common examples of the Abstract Factory pattern include code for operating-system-
independent toolkits, database backends, and country-specific formatters or calculators. An
operating-system-independent GUI toolkit might use an Abstract Factory pattern that returns
a set of WinForm widgets under Windows, Cocoa widgets under Mac, GTK widgets under Gnome,
and QT widgets under KDE. Django provides an abstract factory that returns a set of object-relational
classes for interacting with a specific database backend (MySQL, PostgreSQL, SQLite, and others)
depending on a configuration setting for the current site. If the application needs to be deployed in
multiple places, each one can use a different database backend by changing only one configuration
variable. Different countries have different systems for calculating taxes, subtotals, and totals on

retail merchandise; an Abstract Factory can return a particular tax calculation object.
There are two central features of an Abstract Factory:

« We need to have multiple implementation choices. Each implementation has a factory class
to create objects. A single Abstract Factory defines the interface to the implementation

factories.

« We have a number of closely related objects, and the relationships are implemented via

multiple methods of each factory.

The following UML class diagram seems like a clutter of relationships:

386 Advanced Design Patterns

Client

+some_attr: A
+another_attr: B

Factory

+make_A() : A
+make_B(: B

mplementation 2\

Factory_2

Factory_1

+make_A(Q : A
t— +make_B() : B

+make_A(: A —
{— +make_B() : B

B1 n2
5 U =

Figure 12.6: Abstract Factory pattern

There’s an essential symmetry here that’s very important. The client needs instances of class A
and class B. To the client, these are abstract class definitions. The Factory class is an abstract base
class that requires an implementation. Each of the implementation packages, Implementation 1
and Implementation 2, provides concrete Factory subclasses that will build the necessary A and B

instances for the client.

An Abstract Factory example
The UML class diagram for the Abstract Factory pattern is hard to understand without a specific

example, so let’s turn things around and create a concrete example first. Let’s look at two card
games, Poker and Cribbage. Don’t panic, you don’t need to know all the rules, only that they’re
similar in a few fundamental ways but different in the details. This is depicted in Figure 12.7 on the

next page.

The Game class requires Card objects and Hand objects (among several others). We've shown that
the abstract Card objects are contained within the abstract Hand collection. Each implementation
provides some unique features. For the most part, the PokerCard matches the generic Card definition.
The PokerHand class, however, extends the Hand abstract base class with all the unique rules for
defining the rank of the hand. Poker players know that there are a very, very large number of
Poker game variants. We’ve shown a hand containing five cards because this seems to be a common

feature of many games.

Chapter 12 387

Game

+deck: List[Card]
+hand: Hand

+deal(: Hand
+score(hand: Hand) -> List[Trick]

CardGameFact
ardGameFactory makes Hand
+make_card(rank, suit) : Card cards: List[Card]
+make_hand(cards) : Hand
makes
Card
rank: int
suit: Suit
Cribbage\ Poker\
CribbageFactory PokerFactory
+make_card(rank, suit) : Card +make_card(rank, suit) : Card
+make_hand(cards) : Hand +make_hand(cards) : Hand

Figure 12.7: Abstract Factory pattern for Cribbage and Poker

The Cribbage implementation introduces a number of types of CribbageCard subclasses, each
of which has an additional attribute, points. The CribbageFace cards are all worth 10 points,
while for the other kinds of CribbageCard classes, the number of points matches the rank. The
CribbageHand class extends the abstract base class of Hand with the unique rules for finding all the
scoring combinations in a hand. We can use an Abstract Factory to build Card and Hand objects

that are appropriate for each game.

Here are the core definitions of Suit, Card, Trick, and Hand. A hand’s score is based on the score
of the one (or more) tricks it contains. We didn’t make these abstract base classes. Python doesn’t

require this, and the extra complexity didn’t seem helpful.

from enum import Enum, auto
from typing import NamedTuple

class Suit(str, Enum):
Clubs = "\N{Black Club Suit}"
Diamonds = "\N{Black Diamond Suit}"

388 Advanced Design Patterns

Hearts
Spades

"\N{Black Heart Suit}"
"\N{Black Spade Suit}"

class Card(NamedTuple):

rank: int
suit: Suit

def _ _str_ (self) -> str:
return f"{self.rank}{self.suit.value}"

class Trick(int, Enum):
pass

class Hand(list[Card]):
def __init_ (self, *cards: Card) -> None:
super().__init__(cards)

@abc.abstractmethod
def scoring(self) -> list[Trick]:

These seem to capture the essence of “card” and “hand of cards.” They include the suit and rank
concept of cards, and also computing the score from a collection of tricks. We’ll need to extend
these with subclasses that pertain to each game. We’ll also need an Abstract Factory that creates

cards and hands for us:
import abc
class CardGameFactory(abc.ABC):

@abc.abstractmethod
def make_card(self, rank: int, suit: Suit) -> "Card":

@abc.abstractmethod
def make_hand(self, *cards: Card) -> "Hand":

Chapter 12 389

We’ve made the factory an actual abstract base class. Each individual game needs to provide
extensions for the game’s unique features of Hand and Card. Any game application will also provide

an implementation of the CardGameFactory class that can build the expected classes.

We can define the cards for Cribbage like this:

class CribbageCard(Caxd):
@property
def points(self) -> int:
return self.rank

class CribbageAce(Caxd):
@property
def points(self) -> int:
return 1

class CribbageFace(Caxd):
@property
def points(self) -> int:
return 10

These extensions to the base Card class all have an additional points property. In Cribbage, one
of the kinds of tricks is any combination of cards worth 15 points. Most cards have points equal
to the rank, but the Jack, Queen, and King are all worth 10 points. This also means the Cribbage

extension to Hand has a rather complex method for scoring, which we’ll omit for now.

class CribbageHand(Hand):
starter: Card

def upcard(self, starter: Card) -> "Hand":
self.starter = starter
return self

def scoring(self) -> list[Trick]:
"""15's. Pairs. Runs. Right Jack."""

details omitted...
return tricks

390 Advanced Design Patterns

To provide some uniformity between the games, we’ve designated the scoring combinations in
Cribbage and the rank of the hand in Poker as a subclass of “Trick.” In Cribbage, there’s a fairly large
number of point-scoring tricks. In Poker, on the other hand, there’s a single trick that represents

the hand as a whole. Tricks don’t seem to be a place where an Abstract Factory is useful.

The computation of the various scoring combinations in Cribbage is a rather sophisticated problem.
It involves looking at all possible combinations of cards that total to 15 points, among other things.

These details are unrelated to the Abstract Factory design pattern.

The Poker variant has its own unique complication: Aces are a higher rank than the King. This

leads to the following class definitions:

class PokerCard(Caxd):
def _ str_ (self) -> str:
if self.rank == 14:
return f"A{self.suit}"
return f"{self.rank}{self.suit}"

class PokerHand(Hand) :
def scoring(self) -> list[Trick]:

details omitted...
return [rank]

Ranking the various hands in poker is also a rather sophisticated problem, but outside the Abstract

Factory realm. Here’s the concrete factory that builds hands and cards for Poker:

class PokerFactory(CardGameFactory):
def make_card(self, rank: int, suit: Suit) -> "Card":

if rank ==
Aces above kings
rank = 14

return PokerCard(rank, suit)

def make_hand(self, *cards: Card) -> "Hand":
return PokerHand(*cards)

Note the way the make_card () method reflects the way aces work in Poker. Having the Ace outrank

the King reflects a common complication in a number of card games; we need to reflect the various

Chapter 12 391

ways Aces work.

Here’s a test case for how Cribbage works:

>>> factory = CribbageFactory()
>>> cards = [

factory.make_card Suit.Clubs),

factory.make_card
factory.make_card

Suit.Hearts),
Suit.Spades),

(6,
factory.make_card(7, Suit.Diamonds),
(8,

(9,

1
>>> starter = factory.make_card(5, Suit.Spades)
>>> hand = factory.make_hand(*caxds)
>>> score = sorted(hand.upcard(starter).scoring())
>>> [t.name for t in score]
['Fifteen', 'Fifteen', 'Run_5']

We've created an instance of the CribbageFactory class, a concrete implementation of the abstract
CardGameFactory class. We can use the factory to create some cards, and we can also use the factory
to create a hand of cards. When playing Cribbage, an additional card is flipped, called the “starter”
In this case, our hand is four cards in sequence, and the starter happens to fit with that sequence.
We can score the hand and see that there are three scoring combinations: there are two ways to

make 15 points, plus a five-card run.

This design provides some hints toward what needs to be done when we want to add support
for more games. Introducing new rules means creating the new Hand and Card subclasses and
extending the Abstract Factory class definition, also. Of course, inheritance leads to the opportunity

for reuse, something we can capitalize on to create families of games with similar rules.

Abstract Factories in Python

The previous example highlights an interesting consequence of the way Python’s duck typing
works. Do we really need the abstract base class, CardGameFactory? It provides a framework used
for type checking, but otherwise doesn’t have any useful features. Since we don’t really need it, we

can think of this design as having three parallel modules (see Figure 12.8 on the next page).

Both of the defined games implement a class, CardGameFactory, that defines the unique features
of the game. Because these are in separate modules, we can use the same name for each class.
This lets us write a Cribbage application that uses from cribbage import CardGameFactory. This

approach skips past the overhead of a common abstract base class and lets us provide extensions as

392 Advanced Design Patterns

Game

+deck: List[Card]
+hand: Hand

+deal() : Hand
+score(hand: Hand) -> List[Trick]

Poker\ Crib
oker Base ri Baqe\
CardGameFactory Hand CardGameFactory
— +make_card(rank, suit) : Card cards: List[Card] +make_card(rank, suit) : Card —

+make_hand(cards) : Hand Tﬁj I +make_hand(cards) : Hand

Card s
PokerHand —Teh0 CribbageHand
suit: Suit +upcard(card: Card)
<7 4
4
CribbageCard
+points : int

‘CribbageFaceI [CribbageAceI
| 1 [1
C J C J

Figure 12.8: Abstract Factory without abstract base classes

separate modules sharing some common base class definitions. Each alternative implementation
also provides a common module-level interface: they expose a standard class name that handles the

remaining details of creating unique objects.

In this case, the Abstract Factory becomes a concept that helps us design a common module structure;
it is not implemented as an actual abstract base class. We’ll need to provide adequate documentation
in the docstrings for all classes that purport to be CardGameFactory implementations. We can clarify

our intentions by defining protocols using typing.Protocol. It could look like this:

class CardGameFactoryProtocol(Protocol):
def make_card(self, rank: int, suit: Suit) -> "Card":

def make_hand(self, *cards: Card) -> "Hand":

This definition allows tools like mypy to confirm that a Game class can refer to either a poker. CardGameFactory

or a cribbage.CardGameFactory because both implement the same protocol. Unlike the abstract

Chapter 12 393

base class definition, this is not a runtime check. A protocol definition is only used by tools to

confirm that the code is likely to work.

The Abstract Factory pattern helps us define related families of objects — for instance, playing
cards and hands. A single factory can produce two separate classes of objects that are closely
related. In some cases, the relationships aren’t a simple collection and an item. Sometimes there are
sub-collections in addition to items. These kinds of structures can be handled using the Composite

design pattern.

The Composite pattern

The Composite pattern allows complex tree structures to be built from simple components, often
called nodes. A node with children will behave like a container; a node without children will
behave like a single object. A composite object is — generally — a container object, where the

content may be another composite object.

Traditionally, each node in a composite object must be either a leaf node (that cannot contain other
objects) or a composite node. and leaf nodes can have the same interface. The following UML

diagram shows this elegant parallelism as a some_action() method:

Component

+some_action()

*

Contains
Leaf Composite B
+children: ListfComponent]
+some_action() 7
L =) +some_action()

Figure 12.9: The Composite pattern

This simple pattern, however, allows us to create complex arrangements of elements, all of which
satisfy the interface of the component object. Figure 12.10 (next page) depicts a concrete instance of

such a complicated arrangement.

The Composite pattern applies to language processing. Both natural languages and artificial
languages (like Python) tend to follow rules that are hierarchical and fit nicely with the Composite
design pattern. Markup languages, like HTML, XML, RST, and Markdown, tend to reflect some

common composite concepts like lists of lists, and headers with sub-headings.

394 Advanced Design Patterns

o

Root

Leaf Composite Composite
Leaf Composite Leaf Leaf Composite
Leaf Leaf Leaf Leaf Leaf Leaf

Figure 12.10: A large Composite object collection

A programming language involves recursive tree structures. The Python standard library includes
the ast module, which provides the classes that define the structure of Python code. We can use
this module to examine Python code without resorting to regular expressions or other hard-to-get-

correct text processing.

A Composite example

The Composite pattern works best when applied to tree structures with nested collections of
children. Examples include the tag structure in HTML documents, and the files and folders of a file
system. A programming language with nested statements — like Python — is best described using

the Composite design pattern.

We'll look at the file system, since it’s relatively simple. Regardless of whether a node in the tree is
an ordinary data file or a folder, it is still subject to operations such as moving, copying, or deleting
the node. We can create a component interface that supports these operations, and then use a

composite object to represent folders, and leaf nodes to represent data files.

This example overlaps with the pathlib module in many ways. It’s important to

\/:l’l,\ look more at the design pattern than the overlaps with other packages.

Of course, in Python, once again, we can take advantage of duck typing to implicitly provide the

interface, so we only need to write two classes. Let’s sketch out the interfaces first. Here’s some

Chapter 12

395

incomplete code to help us start thinking about Folder and File:

class Folder:

def __init_ (
self,
name: str,
children: dict[str, "Node"] | None = None
) -> None:
self.name = name
self.children = children oxr {}
self.parent: "Folder | None" = None
def _ repr_ (self) -> str:
return f"Folder({self.name!xr}, {self.children!r})"
def add_child(self, node: "Node") -> "Node":
node.parent = self
return self.children.setdefault(node.name, node)
def move(self, new_folder: "Folder") -> None:
pass # Changes the parent
def copy(self, new_folder: "Folder") -> None:
pass # Whole tree
def remove(self) -> None:
pass # Must be empty
class File:
def __init_ (self, name: str) -> None:
self.name = name
self.parent: "Folder | None" = None
def _ repr_ (self) -> str:
return f"File({self.name!r})"
def move(self, new_path: "File") -> None:
pass # Changes the parent
def copy(self, new_path: "File") -> None:
pass # Changes both parents
def remove(self):

pass # Changes the parent

For each Folder, a composite object, we maintain a dictionary of children. The children may be a

mixture of Folder and File instances. For many composite implementations, a list is sufficient, but

in this case, a dictionary will be useful for looking up children by name.

Thinking about the methods involved, there are several patterns:

« The move () method has the comment “changes the parent.” A file isn’t moved in isolation;

396 Advanced Design Patterns

the containing folder reflects the move. To do a move, relocating the Folder will carry along
all the children. Relocating a File will turn out to be the same code; we can use an empty

dictionary to show there are no children.

« To do a copy of a Folder, we’ll need to copy all of the children. For a File node, we don’t

need to do anything more.

« For a delete, we should follow the Linux pattern of requiring the children have already been

removed before trying to remove a parent.

This design lets us create subclasses with distinct operation implementations. Each subclass

implementation could make external requests, or perhaps make OS requests on the local machine.

Also, we need to upgrade our data structure to include the the parent node for a given File or
Folder node. Sketching out the initial design made it clear, the parent Folder information was

required.

To take advantage of the similar operations, we can extract the common methods into an abstract

base class. Let’s refactor this to create a base class, Node, with the following code:

import abc

class Node(abc.ABC):
def __init_ (

self,
name: str,
) -> None:
self.name = name
self.parent: "Folder | None" = None

def move(self, new_place: "Folder") -> None:
previous = self.parent
new_place.add_child(self)
if previous:
del previous.children[self.name]

@abc.abstractmethod

def copy(self, new_folder: "Folder") -> None:

@abc.abstractmethod
def remove(self) -> None:

Chapter 12 397

This abstract Node class defines that each node has a string with a reference to a parent. Keeping the
parent information around lets us look “up” the tree toward the root node. This makes it possible to

move and remove files by making a change to the parent’s collection of children.

The move () method reassigns a Folder or a File object to a new parent. It follows up by removing
the object from its previous location. For the move() method, the target should be an existing
Folder, or we’ll get an error because a File instance doesn’t have an add_child() method. As in
many examples in technical books, error handling is woefully absent, to help focus on the principles
under consideration. A common practice is to handle any AttributeError exceptions by raising a

new TypeError exception. See Chapter 4.

We can then extend this class to provide the unique features of a Folder that has children, and a

File, which is the leaf node of the tree and has no children. Here’s the Folder class:

class Folder(Node):
def __init_ (self, name: str, children: dict[str, "Node"] | None = None)
-> None:
super().__init__(name)
self.children = children or {}

def __repr_ (self) -> str:
return f"Folder({self.name!r}, {self.children!r})"

def add_child(self, node: "Node") -> "Node":
node.parent = self
return self.children.setdefault(node.name, node)

def copy(self, new_folder: "Folder") -> None:
target = cast(Folder, new_folder.add_child(Foldexr(self.name)))
for c in self.children:
self.children[c].copy(target)

def remove(self) -> None:
names = list(self.children)
for c in names:
self.children[c].remove()
if self.parent:
del self.parent.children[self.name]

398 Advanced Design Patterns

The details of the move, copy, and remove operations are incomplete: they don’t make any changes

to real files in the OS filesystem. We’ll leave those as an exercise.

Here’s the File class:

class File(Node):
def __repr_ (self) -> str:
return f"File({self.name!xr})"

def copy(self, new_folder: "Folder") -> None:
new_folder.add_child(File(self.name))

def remove(self) -> None:
if self.parent:
del self.parent.children[self.name]

Again, the details of the move, copy, and remove operations are incomplete: they don’t make any

changes to real files in the OS filesystem. We want to get the composite design right first.

When we add a child to a Folder, we’ll do two things. First, we tell the child who their new parent
is. This makes sure that each Node (except the root Folder instance) has a parent. Second, we’ll

drop the new Node into the folder’s collection of children, if it doesn’t already exist.

When we copy Folder objects around, we need to make sure all the children are copied. Each child
could, in turn, be another Folder, with children. This recursive walk involves delegating the copy ()
operation to each sub-Folder within a Folder instance. The implementation for a File object, on

the other hand, is simpler.

The recursive design for removal is similar to the recursive copy. A Folder instance must first
remove all of the children; this may involve removing sub-Folder instances. A File object, on the

other hand, can be directly removed.

Well, that was easy enough. Let’s see if our composite file hierarchy is working properly with the

following code snippet:

>>> tree = Folder("Tree")
>>> tree.add_child(Folder("sxc"))
Folder('sxc', {})

>>> tree.children["sxc"].add_child(File("ex1l.py"))
File('exl.py')
>>> tree.add_child(Folder("sxc"))

Chapter 12 399

Folder('Tree', {'src': Folder('src', {'exl.py': File('exl.py'), 'testl.py':
File('testl.py')})})

The value of tree can be a little difficult to visualize. Here’s a variation on the display that can help.

+-- Tree
+-- sIC
+-- exl.py
+-- testl.py

We didn’t cover the algorithm for producing this nested visualization. It’s not too difficult to add to

the class definitions. We've left this as an exercise, also.

We can see that the parent folder, Tree, has a sub-folder, src, with two files inside it. We can

describe a filesystem operation like this:

>>> testl = tree.children["src"].children["testl.py"]
>>> testl

File('testl.py')

>>> tree.add_child(Folder("tests"))

Folder('tests', {})

>>> testl.move(tree.children["tests"])

>>> tree

Folder('Tree', {'src': Folder('sxc', {'exl.py': File('exl.py')}), 'tests':
Folder('tests', {'testl.py': File('testl.py')})})

We've created a new folder, tests, and moved the file. Here’s another view of the resulting composite

objects:
+-- Tree
+-- sIC
+-- exl.py
+-- tests
+-- testl.py

The Composite pattern is extremely useful for a variety of tree-like structures, including GUI

400 Advanced Design Patterns

widget hierarchies, file hierarchies, tree sets, graphs, and the HTML document object model (DOM).
Sometimes, if only a shallow tree is being created, we can get away with a list of lists or a dictionary
of dictionaries, and do not need to implement custom component, leaf, and composite classes.
Indeed, JSON, YAML, and TOML documents often follow the dict-of-dict pattern.

While we often use abstract base classes for building Composite objects, it isn’t required; Python’s
duck typing can make it easy to add other objects to a composite hierarchy, as long as they have

the correct interface.

One of the important aspects of the Composite pattern is a common interface for the various
subtypes of a node. We needed two implementation variants for Folder and File classes. In some
cases, these operations are similar, and it can help to offer a template implementation of a complex

method.

The Template pattern

The Template pattern (sometimes called the Template method) is useful for removing duplicate code;
it’s intended to support the Don’t Repeat Yourself design principle we discussed in Chapter 5. It
is designed for situations where we have several different tasks to accomplish that have some, but
not all, steps in common. The common steps are implemented in a base class, and the distinct steps
for each subclass are overridden to provide custom behavior. This is built on the Strategy pattern;

in a way, it’s an application of Strategy to a more specialized need. Here it is in the UML format:

Client

+something_interesting()

TemplateCommand

+do_process()

+step_1()

+step_2()

+step_3()

+step_4(
Implementation_Choice Another_Choice
+step_2() +step_2()

Figure 12.11: The Template pattern

Chapter 12 401

This may seem like a straightforward application of inheritance. That’s because it is generally
pretty clear what’s going on. The interesting spin is the idea that there’s a general template for a

complicated process, and steps of the process can be overridden in distinct ways.

A Template example

Let’s create a car sales reporter as an example. We can store records of sales in an SQLite database
table. SQLite is the built-in database engine that allows us to store records using SQL syntax. Python

includes SQLite in its standard library, so there are no extra modules to install.
We have two common tasks we need to perform:
« Select all sales of new vehicles and output them to the screen in a comma-delimited format

« Output a comma-delimited list of all salespeople with their gross sales and save it to a file

that can be imported to a spreadsheet

These seem like quite different tasks, but they have some common features. In both cases, we need

to perform the following steps:
1. Connect to the database.
2. Construct a query for new vehicles or gross sales.
3. Issue the query.
4. Format the results into a comma-delimited string.
5. Output the data to a file or email.

The query construction and output steps are different for the two tasks, but the remaining steps are
identical. We can use the Template pattern to put the common steps in a base class, and the varying

steps in two subclasses.

Before we start, let’s create a database and put some sample data in it, using a few lines of SQL:
import sqlite3
def db_preparation(db_name: str = "sales.db") -> sqlite3.Connection:
conn = sqlite3.connect(db_name)

conn.execute(

402 Advanced Design Patterns

CREATE TABLE IF NOT EXISTS Sales (
salesperson text,
amt currency,
year integer,
model text,
new boolean
)

)

conn.execute(

DELETE FROM Sales

)

values = [
('Tim', 16000, 2010, 'Honda Fit', 'true'),
('Tim', 9000, 2006, 'Ford Focus', 'false'),
('Hannah', 8000, 2004, 'Dodge Neon',6 'false'),
('Hannah', 28000, 2009, 'Ford Mustang', 'true'),
('Hannah', 50000, 2010, 'Lincoln Navigator', 'true'),
('Jason', 20000, 2008, 'Toyota Prius', 'false')

1

conn.executemany (

INSERT INTO Sales VALUES (?,?,?,?,?)

values)
conn.commit ()
return conn

Hopefully, you can see what’s going on here even if you don’t know SQL. We’ve created a table
named Sales to hold the data, and used six insert statements to add sales records. The data will
be stored in a file named sales.db. Now we have a sample database with a table we can work with

in developing our Template pattern.

Since we’ve already outlined the steps that the template has to perform, we can start by defining
the base class that contains the steps. Each step gets its own method (to make it easy to selectively
override any one step), and we have one more managerial method that calls the steps in turn.

Without any method content, here’s how the class might look as a first step toward completion:

Chapter 12 403

class QueryTemplate:
def __init_ (self, db_name: str = "sales.db") -> None:
self.db_name = db_name
self.conn: sqlite3.Connection
self.results: list[tuple[str, ...]]
self.query: str
self.header: list[str]

def connect(self) -> None:
self.conn = sqlite3.connect(self.db_name)

def construct_query(self) -> None:
raise NotImplementedErroxr("construct_query not implemented")

def do_query(self) -> None:
results = self.conn.execute(self.query)
self.results = results.fetchall()

def output_context(self) -> ContextManager[TextIO]:
self.target_file = sys.stdout
return cast(ContextManager[TextIO], contextlib.nullcontext())

def output_results(self) -> None:
writer = csv.writer(self.target_file)
writer.writerow(self.header)
writer.writerows(self.results)

def process_format(self) -> None:
self.connect()
self.construct_query()
self.do_query()
with self.output_context():
self.output_results()

The process_format () method is the primary method to be called by an outside client. It will
process the query and format the results. It ensures each step is executed in order, but it does not
care whether that step is implemented in this class or in a subclass. For our examples, we expect

the construct_query() and the output_context() methods are likely to change.

In Python, we can formalize our expectation by using an abstract base class. A commonly used
alternative is to define a class with default methods. Some do nothing useful. Others, like

construct_query(), raise a NotImplementedExrror exception to show that a method is missing.

404 Advanced Design Patterns

As with the @abstractmethod decoration and the abc . ABC base class, this is a runtime check.

Looking more deeply, we can see three distinct ways to create what is effectively an abstract base

class.

« Use abc.ABC as the base class, and decorate abstract methods with @abstractmethod. Tools

like mypy can check for missing implementations.

« Define methods that raise the NotImplementedError exception to help the developer under-
stand that the class is meant to be subclassed and the method overridden. It can be described
as “smuggling in an abstract base class without being explicit” in the class definition. Tools
like mypy can’t discern the intent behind this code; but a person will see it when their unit

tests fail.

« Provide “do nothing” default behavior. For example, the output_context () method may be
overridden. There’s a default implementation provided that sets the
self.target_file instance variable and also returns a context value. The default uses

sys.stdout as the output file and a null context manager.

Now we have a template class that takes care of the details unlikely to change. This makes it
flexible enough to allow the execution and formatting of a wide variety of queries. The best part is,
if we ever want to change our database engine from SQLite to another database engine (such as
py-postgresql), we only have to do it here, in this template class, and we don’t have to touch the

two (or two hundred) subclasses we might have written.

Let’s have a look at the concrete classes now:

import datetime

class NewVehiclesQuery(QueryTemplate):
def construct_query(self) -> None:
self.query = """
SELECT * FROM Sales WHERE new='true'

self.header = ["salesperson", "amt", "year", "model", "new"]

class SalesGrossQuery(QueryTemplate):
def construct_query(self) -> None:
self.query = """

Chapter 12 405

SELECT salesperson, sum(amt) FROM Sales GROUP BY salesperson

self.header = ["salesperson", "total sales"]

def output_context(self) -> ContextManager[TextIO]:
today = datetime.date.today()
filepath = Path(f"gross_sales_{today:%Y%m%d}.csv")
self.target_file = filepath.open("w")
return self.target_file

These two classes are actually pretty short, considering what they’re doing: connecting to a database,
executing a query, formatting the results, and outputting them. The superclass takes care of the
repetitive work, but lets us easily specify those steps that vary between tasks. Further, we can
also easily change steps that are provided in the base class. For example, if we wanted to output
something other than a comma-delimited string (for example, an HTML report to be uploaded to a

website), we could still override the output_results() method.

Recall

Often, we’ll spot really good ideas that are repeated; the repetition can form a recognizable pattern.
Exploiting a pattern-based approach to software design can save the developer from wasting time
trying to reinvent something already well understood. In this chapter, we looked at a few more

advanced design patterns:

« An Adapter class is a way to insert an intermediary so a client can make use of an existing
class even when the class is not a perfect match. The software adapter parallels the idea
of USB hardware adapters between various kinds of devices with various USB interface

connectors.

« The Facade pattern is a way to create a unified interface over a number of objects. The idea
parallels the facade of a building that unifies separate floors, rooms, and halls into a single

space.

« We can leverage the Flyweight pattern to implement a kind of lazy initialization. Instead
of copying objects, we can design Flyweight classes that share a common pool of data,
minimizing or avoiding initialization entirely.

« When we have closely related classes of objects, the Abstract Factory pattern can be used to

build a class that can emit instances that will work together.

406 Advanced Design Patterns

« The Composition pattern is widely used for complex document types. It covers programming
languages, natural languages, and markup languages, including XML and HTML. Even
something like the filesystem with a hierarchy of directories and files fits this design pattern.

« When we have a number of similar, complex classes, it seems appropriate to create a class
following the Template pattern. We can leave gaps or openings in the template, into which

we can inject any unique features.

These patterns can help a designer focus on accepted, good design practices. Each problem is, of
course, unique, so the patterns must be adapted. It’s often better to make an adaptation to a known

pattern and avoid trying to invent something completely new.

Exercises

Add the os and pathlib calls to implement the methods for the File and Folder classes in the The
Composite pattern section. The copy () method on File will need to read and write the bytes of a
file. The copy () method on Folder is quite a bit more complicated, as you first have to duplicate
the folder, and then recursively copy each of its children to the new location. The examples we
provided update the internal data structure, but don’t apply changes to the operating system. Be

careful about testing this in isolated directories. You don’t want to accidentally destroy important
files.

The Composite example has an alternative design, also. Consider how this could be built using a
Facade class to contain operations from pathlib and shutil. Which implementation of Folder-File

move, copy, and remove operations seems easier to understand? Which is easier to test?

As in the previous chapter, look at the patterns we’ve discussed and consider ideal places where
you might implement them. You may want to apply the Adapter pattern to existing code, as it is
usually applicable when interfacing with existing libraries, rather than new code. How can you use

an Adapter to force two interfaces to interact with each other correctly?

Can you think of a system complex enough to justify using the Fagade pattern? Consider how
facades are used in real-life situations, such as the driver-facing interface of a car, or the control
panel in a factory. It is similar in software, except the users of the facade interface are other
programmers, rather than people trained to use it. Are there complex systems in your latest project

that could benefit from the Facade pattern?

It’s possible you don’t have any huge, memory-consuming code that would benefit from the

Flyweight pattern, but can you think of situations where it might be useful? Anywhere that large

Chapter 12 407

amounts of overlapping data need to be processed, a Flyweight is waiting to be used. Would it be
useful in the banking industry? In web applications? At what point does adopting the Flyweight

pattern make sense? When is it overkill?

The Abstract Factory pattern, or the somewhat more Pythonic derivatives we discussed, can be very
useful for creating one-touch-configurable systems. Can you think of places where such systems

are useful?

The Composite pattern applies in a number of places. There are tree-like structures all around us in
programming. Some of them, like our file hierarchy example, are blatant; others are fairly subtle.
What situations might arise where the Composite pattern would be useful? Can you think of places
where you can use it in your own code? What if you adapted the pattern slightly; for example, to

contain different types of leaf or composite nodes for different types of objects?

The ast module provides a composite tree structure for Python code. A particularly useful thing is
to use the ast module to locate all of the import statements in some code. This can help confirm that

a project’s list of required modules, often in a requirements. txt file, is complete and consistent.

A Template method is helpful when decomposing a complex operation so it is open to extension.
When we look back at the Facade examples, where we’re finding files and then executing PlantUML
to make images from the UML source files, this seems to be a potential for a Template. What if we
want both PNG files as well as EIgXfiles from PlantUML? What is the common processing that

should be part of a Template? What is the unique processing for each format?

Summary

In this chapter, we went into detail on several more design patterns, covering their canonical
descriptions as well as alternatives for implementing them in Python. We saw how Python is often
more flexible and versatile than traditional object-oriented languages. The Adapter pattern is useful
for matching interfaces, while the Facade pattern is suited to simplifying them. Flyweight is a
complicated pattern and only useful if memory optimization is required. Abstract Factories allow
the runtime separation of implementations depending on configuration or system information. The
Composite pattern is used universally for tree-like structures. A Template method can be helpful

for breaking complex operations into steps to avoid repeating the common features.

408 Advanced Design Patterns

This is the last of the truly object-oriented design chapters in this book. In the next chapter, we’ll
discuss how important it is to test Python programs, and how to do it, focusing on object-oriented
principles. Then, in the final chapter, we’ll look at the concurrency features of Python and how to

exploit them to get work done more quickly.

Chapter 12 409

Join our community Discord space

Join our Python Discord workspace to discuss and know more about the book: https://packt.1i

nk/dHrHU

=] T [u]

https://packt.link/dHrHU
https://packt.link/dHrHU

13

Testing Object-Oriented
Programs

Skilled Python programmers agree that testing is one of the most important aspects of software
development. Even though this chapter is placed near the end of the book, it is not an afterthought;
everything we have studied so far will help us when writing tests. In this chapter, we’ll look at the

following topics:
+ The importance of unit testing and test-driven development
« The standard library unittest module
« The pytest tool
+ The mock module
« Code coverage

We'll start with some of the fundamental reasons why automated software testing is so important.

412 Testing Object-Oriented Programs

Why test?

Many programmers already know how important it is to test their code. If you’re among them, feel
free to skim this section. You’ll find the next section — where we actually see how to create tests in

Python — much more interesting.

If you’re not convinced of the importance of testing, we remind you that without any tests, code

will be broken, and no one has any way to know it. Read on!

Some people argue that testing is more important in Python code because of its dynamic nature;
compiled languages such as Java and C++ are occasionally thought to be somehow safer because
they enforce type checking at compile time. However, Python tests rarely check types. Tests check
values. They make sure that the right attributes have been set at the right time or that the sequence
has the right length, order, and values. These higher-level concepts need to be tested in any language.
The real reason Python programmers test more than programmers of other languages is that it is so

easy to test in Python!

But why test? Do we really need to test? What if we didn’t test? To answer those questions, reflect
on the last time you wrote any code. Did it run correctly the first time? Was it free of syntax errors?
Was it free of logic problems? It’s possible, in principle, to type in code that’s perfect once in a
while. As a practical matter, the number of obvious syntax errors that had to be corrected is an

indicator that perhaps there are more subtle logic errors that also had to be corrected.

We don’t need a formal, separate test to make sure our code works. Running the program, as we
generally do, and fixing the errors is a crude form of testing. Python’s interactive interpreter and
near-zero compile times make it easy to write a few lines of code and run the program to make
sure those lines are doing what is expected. While acceptable at the beginning of a project, this
turns into a liability that grows over time. Attempting to change a few lines of code can affect parts
of the program that we didn’t realize would be influenced by the changes, and without automated
tests, we wouldn’t know what we broke. Attempts at redesigns or even small optimization rewrites
can be plagued with problems. Furthermore, as a program grows, the number of paths that the
interpreter can take through that code also grows, and it quickly becomes impossible or a crude

manual test to exercise all the logic paths.

To assure ourselves and to demonstrate to others that our software works, we write automated
tests. These are programs that automatically run certain inputs through other programs or parts of
programs. We can run these test programs in seconds and cover far more potential input situations

than one programmer would think to test every time they change something.

Chapter 13 413

Software features that can’t be demonstrated by automated tests simply don’t exist.
— Extreme Programming Explained, Kent Beck
There are four main reasons to write tests:
« To ensure that code is working the way the developer thinks it should
« To ensure that code continues working when we make changes
« To ensure that the developer understood the requirements
« To ensure that the code we are writing has a maintainable interface

When we have automated tests, we can run them every time we change code, whether it is during
initial development or maintenance releases. Testing can confirm that we didn’t inadvertently break

anything when adding or extending features.

The last two of the preceding points have interesting consequences. When we write tests, it helps
us design the API, interface, or pattern that code takes. Thus, if we misunderstood the requirements,
writing a test can help highlight the misunderstanding. From the other side, if we’re not certain
how we want to design a class, we can write a test that interacts with that class so we have an idea
of the most natural way to confirm that the interface works. In fact, it is often beneficial to write

the tests before we write the code we are testing.

There are some other interesting consequences of focusing on software testing. We’ll look at three

of these consequences:
« Using tests to drive development
« Managing different objectives for testing
« Having a consistent pattern for test scenarios

Let’s start with using tests to drive the development effort.

Test-driven development

Write tests first is the mantra of test-driven development. Test-driven development takes the
untested code is broken code concept one step further and suggests that only unwritten code should
be untested. We don’t write any code until after we have written the tests that will prove it works.
The first time we run a test, it should fail, since the code hasn’t been written. Then, we write the

code that ensures the test passes, and then write another test for the next segment of code.

414 Testing Object-Oriented Programs

Test-driven development can be fun; it allows us to build little puzzles to solve. Then, we implement
the code to solve those puzzles. After that, we make a more complicated puzzle, and we write code

that solves the new puzzle without unsolving the previous one.

There are two goals of the test-driven methodology. The first is to ensure that tests really get

written.

Secondly, writing tests first forces us to consider exactly how the code will be used. It tells us what
methods objects need to have and how attributes will be accessed. It helps us break up the initial
problem into smaller, testable problems, and then recombine the tested solutions into larger, also
tested, solutions. Writing tests can thus become a part of the design process. Often, when we’re
writing a test for a new object, we discover anomalies in the design that force us to consider new

aspects of the software.

Testing makes software better. Writing tests before we release the software makes it better before

the final code is written.

All the code examined in the book has been run through an automated test suite. It’s the only way

to be absolutely sure that the examples are rock-solid, working code.

Testing objectives

We have a number of distinct objectives for running tests. These are often called types of testing,
but the word “type” is heavily overused in the software industry. In this chapter, we’ll look at only

two of these testing goals:

« Unit tests confirm that the software components work in isolation. We’ll focus on this first,
since Fowler’s Test Pyramid seems to suggest that unit testing creates the most value. If
the various classes and functions each adhere to their interfaces and produce the expected
results, then integrating them is also going to work nicely and have relatively few surprises.
It’s common to use the coverage tool to be sure that all the lines of code are exercised as

part of the unit test suite.

+ Integration tests — unsurprisingly — confirm that software components work when inte-
grated. Integration tests are sometimes called system tests, functional tests, and acceptance
tests, among others. When an integration test fails, it often means that an interface wasn’t
defined properly, or a unit test didn’t include some edge case that was exposed through the
integration with other components. Integration testing depends on having good unit tests,

making it secondary in importance.

Chapter 13 415

Note that “unit” isn’t formally defined by the Python language. This is an intentional choice. A unit
of code is often a single function, or a single class. It can be a single module, also. The definition

gives us a little flexibility to identify and isolate units of code.

While there are many distinct objectives for tests, the techniques used for testing tend to be similar.
For additional material, see Types of Software Testing (https://www.softwaretestinghelp.com/ty
pes-of-software-testing/) for a list of over 40 different types of testing objectives; the complete
list can be overwhelming, which is why we will only focus on unit tests and integration tests. All

tests have a common pattern to them, and we’ll look at a general pattern of testing next.

Testing patterns
Writing code is often challenging. We need to figure out what the internal state of the object is and
what state changes it undergoes, and determine the other objects it collaborates with. Throughout

the book, we’ve provided a number of common patterns for designing classes.
Tests, in a way, are simpler than class definitions, and all have essentially the same pattern, called a

scenario:

SCENARIO: use case for some feature
GIVEN some precondition(s) for a scenario
WHEN we exercise some method of a class
THEN some state change(s) or side effect(s) will occur that we can confirm

In some cases, the preconditions can be complex, or perhaps the state changes or side effects
are complex. They might be so complex that we have to break them into multiple steps. What’s
important about this three-part pattern is how it disentangles the setup, execution, and expected
results from each other. This model applies to a wide variety of tests. If we want to make sure the

water’s hot enough to make another cup of tea, we’ll follow a similar set of steps:
« GIVEN a kettle of water on the stove
« AND the burner is off
« WHEN we flip open the lid on the kettle
« THEN we see steam escaping
This pattern is quite handy for making sure we have a clear setup and an observable result.

These three steps are also called Arrange, Act, and Assert. We like the Given-When-Then structure

because it’s part of the Gherkin language for writing test scenarios.

https://www.softwaretestinghelp.com/types-of-software-testing/
https://www.softwaretestinghelp.com/types-of-software-testing/

416 Testing Object-Oriented Programs

Let’s say we need to write a function to compute an average of a list of numbers, excluding None

values that might be in the sequence. We might start out like this:

def average(data: list[int | None]) -> float:

GIVEN a list, data = [1, 2, None, 3, 4]
WHEN we compute m = average(data)
THEN the result, m, is 2.5

pass

We’ve roughed out a definition of the function, with a summary of how we think it should behave.
The GIVEN step defines some data for our test case. The WHEN step defines precisely what we’re
going to be doing. Finally, the THEN step describes the expected results. The automated test tool
can compare actual results against the stated expectation and report back if the test fails. We can
then implement this using the preferred test framework. The ways packages such as unittest
and pytest implement the concept differ slightly, but the core concept remains the same in both
frameworks. Once that’s done, running the test should reveal an expected failure; we can start

implementing the real code, given this test as a clear goal line we want to cross.

Some techniques that can help design test cases are equivalence partitioning and boundary
value analysis. These help us decompose the domain of all possible inputs to a method or function
into partitions. A common example is locating two partitions: one with “valid data” and the
other with “invalid data.” There are often edge cases, special exceptions, and other considerations
that create more partitions. Given the partitions, the values at the boundaries of the partitions
become interesting values to use in test cases. See What is boundary value analysis and equivalent

partitions? at https://www.softwaretestinghelp.com for more information.

We'll start by looking at the built-in testing framework, unittest. It has the disadvantage of being
a bit wordy and complicated-looking. It has the advantage of being built-in and usable immediately;

no further installs are required.

Unit testing with unittest
Let’s start our exploration with Python’s built-in test library. This library provides a common object-

oriented interface for unit tests. The Python library for this is called, unsurprisingly, unittest. It

provides several tools for creating and running unit tests, the most important being the TestCase

https://www.softwaretestinghelp.com

Chapter 13 417

class. (The names follow a Java naming style, so many of the method names don’t look very
Pythonic.) The TestCase class provides a set of methods that allow us to compare values, set up

tests, and clean up when they have finished.

When we want to write a set of unit tests for a specific task, we create a subclass of TestCase and
write individual methods to do the actual testing. These methods must all start with the name test.
When this convention is followed, the tests automatically run as part of the test process. For simple
examples, we can bundle the GIVEN, WHEN, and THEN concepts into the test method. Here’s a very

simple example:

import unittest

class CheckNumbers(unittest.TestCase):
def test_int_float(self) -> None:
self.assertEqual(l, 1.0)

This code subclasses the TestCase class and adds a method that calls the TestCase.assertEqual()
method. The GIVEN step is a pair of values, 1 and 1.0. The WHEN step is a kind of degenerate
example because there’s no new object created and no state change happening. The THEN step is

the assertion that the two values will test as equal.

When we run the test case, this method will either succeed silently or raise an exception, depending
on whether the two parameters are equal. If we run this code, the main function from unittest

will give us the following output:

Ran 1 test in 0.000s
0K

Did you know that floats and integers can be compared as equal?

Let’s add a failing test to this test case, as follows:

def test_str_float(self) -> None:
self.assertEqual(l, "1")

The output of this code is more sinister, as integers and strings are not considered equal:

418 Testing Object-Oriented Programs

Traceback (most recent call last):

File "first_unittest.py", line 9, in test_str_float
self.assertEqual(1l, "1")
AssertionError: 1 != '1'

Ran 2 tests in 0.001s
FAILED (failures=1)

The dot on the first line indicates that the first test in the suite passed successfully; the letter F after
the dot shows that the second test failed. Then, at the end, it gives us an informative summary

telling us how and where the test failed, along with a count of the number of failures.

Even the OS-level return code provides a useful summary. The return code is zero if all tests pass and
non-zero if any tests fail. This helps when building continuous integration tools: if the unittest

run fails, the proposed change shouldn’t be permitted.

We can have as many test methods on one TestCase class as we like. As long as the method name

begins with test, the test runner will execute each one as a separate, isolated test.

An important design consideration is to keep each test completely independent of other tests.

\ Tests need to be independent.

-5 Results or calculations from any test should have no impact on any other test.

In order to keep tests isolated from each other, we may have several tests with a common GIVEN
step, implemented by a common setUp () method. This suggests that we’ll often have classes that
are similar, and we’ll need to use inheritance to design the tests so they can share features and still

remain completely independent.

The key to writing good unit tests is keeping each test method as short as possible, testing a small
unit of code with each test case. If our code does not seem to naturally break up into small, testable
units, it’s probably a sign that the code needs to be redesigned. The Imitating objects using mocks

section, later in this chapter, provides a way to isolate objects for testing purposes.

The unittest module imposes a requirement to structure tests as a class definition. This is — in

Chapter 13 419

some ways — a bit of overhead. The pytest package has slightly more clever test discovery and a
slightly more flexible way to construct tests as functions instead of methods of a class. We’ll look at

pytest next.

Unit testing with pytest

We can create unit tests using a library that provides a common framework for the test scenarios,
along with a test runner to execute the tests and log results. Unit tests focus on testing the least
amount of code possible in any one test. One of the more popular alternatives to the standard
library unittest is the pytest package. This has the advantage of letting us write smaller and

clearer test cases. The lack of overhead makes this a desirable alternative.

Since pytest is not part of the standard library, you’ll need to download and install it. You can get
it from the pytest home page at https://docs.pytest.org/en/stable/. You can install it with

any of the installers or environment managers.

In a Terminal window, activate the virtual environment for your current project. (If you’re using
venv, for example, you might use source .venv/bin/activate.) Then, use an OS command like

the following:

% python -m pip install pytest

When using tools such as uv or poetry, you’ll often add this to the development dependencies with

a command like this:

% uv add pytest --dev

The pytest tool can use a substantially different test layout from the unittest module. It doesn’t
require test cases to be subclasses of unittest.TestCase. Instead, it takes advantage of the fact
that Python functions are first-class objects and allows any properly named function to behave like
a test. Rather than providing a bunch of custom methods for asserting equality, it uses the assert
statement to verify results. This makes tests simpler, more readable, and, consequently, easier to

maintain.

When we run the pytest tool, it starts in the current folder and searches for any modules or
sub-packages with names beginning with the characters test_. (The module name needs to include

the _ character.) If any functions in this module also start with test (no _ required), they will

https://docs.pytest.org/en/stable/

420 Testing Object-Oriented Programs

be executed as individual tests. Furthermore, if there are any classes in the module whose name
starts with Test, any methods on that class that start with test_ will also be executed in the test

environment.

It also searches for tests in a folder named—unsurprisingly—tests. Because of this, it’s common to
have code broken up into two folders: the sxc/ directory contains the working module, library, or

application, while the tests/ directory contains all the test cases.

Using the following code, let’s port the simple unittest example we wrote earlier to pytest:

def test_int_float() -> None:
assert 1 == 1.0

For the same test, we’ve reduced six lines of class definition to two lines of more readable code.

However, we are not forbidden from writing class-based tests. Classes can be useful for grouping
related tests together or for tests that need to access related attributes or methods on the class. The
following example shows an extended class with a passing and a failing test; we’ll see that the error

output is more comprehensive than that provided by the unittest module:

class TestNumbers:
def test_int_float(self) -> None:
assert 1 == 1.0

def test_int_str(self) -> None:
assext 1 == "1" # type: ignore [comparison-overlap]

Notice that the class doesn’t have to extend any special objects to be discovered as a test case. If you
want, you can use unittest.TestCase as the base class; the pytest tool will find and run these,

also.

We'll address the # type: ignore comment later, first, let’s run python -m pytest tests/test_with_pytest.py.

The output looks as follows:

% python -m pytest tests/test_with_pytest.py
test session starts
platform darwin -- Python 3.9.0, pytest-6.2.2, py-1.10.0, pluggy-0.13.1

rootdir: /path/to/ch_13
collected 2 items

Chapter 13 421

tests/test_with_pytest.py .F [100%]
FAILURES

- TestNumbers.test_int_str

self = <test_with_pytest.TestNumbers object at @x7fb557f1a370>

def test_int_str(self) -> None:

> assert 1 == "1"
= AssertionError: assert 1 == "1"
tests/test_with_pytest.py:15: AssertionError
short test summary info ==
FAILED tests/test_with_pytest.py::TestNumbers::test_int_
=== 1 failed, 1 passed in 0.07s

The output starts with some useful information about the platform and interpreter. This can be
useful for sharing or discussing bugs across disparate systems. The third line tells us the name
of the file being tested (if there are multiple test modules picked up, they will all be displayed),
followed by the familiar .F that we saw in the unittest module: the . character indicates a passing

test, while the letter F reports a failure.

After all tests have run, the error output for each of them is displayed. The tool presents a summary
of local variables (there is only one in this example: the self parameter passed into the function),
the source code where the error occurred, and a summary of the error message. In addition, if an
exception other than AssertionExror is raised, pytest will present us with a complete traceback,

including source code references.

By default, pytest suppresses output from the print() function if the test is successful. This is
useful for test debugging; when a test is failing, we can add print() statements to the test to check
the values of specific variables and attributes as the test runs. If the test fails, these values are output
to help with diagnosis. However, once the test is successful, the print() output is not displayed,
and they are easily ignored. We don’t have to clean up the test output by removing the print()
output. If the tests ever fail again, due to future changes, the debugging output will be immediately

available.

Interestingly, this use of the assert statement exposes a potential problem to mypy. When we use
the assert statement, mypy can scrutinize the types, and will alert us to a potential problem with

assert 1 == “1”. This code is unlikely to be right. And, of course, it does fail!

We’ve looked at how pytest supports the WHEN and THEN steps of a test scenario using a

function and the assert statement. Now, we need to look more closely at how to handle GIVEN

422 Testing Object-Oriented Programs

steps. There are two ways to establish the GIVEN precondition for a test; we’ll start with one that

works for simple cases.

pytest’'s setup and teardown functions

The pytest tool offers setup and teardown capabilities, similar to the methods used in unittest,
but it provides even more flexibility. We’ll discuss these general functions briefly; pytest provides

us with a powerful fixtures capability, which we’ll discuss in the next section.

If we are writing class-based tests, we can use two methods called setup_method() and teardown_method().
They are called before and after each test method in the class to perform setup and cleanup duties,

respectively.

In addition, pytest provides other setup and teardown functions to give us more control over when
preparation and cleanup code is executed. The setup_class() and teardown_class() methods are
expected to be class methods; they accept a single argument representing the class in question (there
is no self argument because there’s no instance; instead, the class is provided). These methods are

run by pytest for the class as a whole rather than on each test within the class.

Finally, we have the setup_module() and teardown_module() functions, which are run by pytest
immediately before and after all tests (in functions or classes) in that module. These can be useful
for one-time setup, such as creating a socket or database connection that will be used by all tests in
the module. Be careful with this one, as it can accidentally introduce dependencies between tests if

some object state isn’t correctly cleaned up between tests.
Let’s look at an example that illustrates exactly when it happens. We’ll break this into three parts.

First is some module-level setup and teardown:

from collections.abc import Callable
from typing import Any

def setup_module(module: Any) -> None:
print(f"setting up MODULE {module.__name__}")

def teardown_module(module: Any) -> None:
print(f"tearing down MODULE {module.__name__}")

Chapter 13 423

def test_a_function() -> None:
print ("RUNNING TEST FUNCTION")

Here’s an abstract base class for test cases that has class-level setup and teardown:

class BaseTest:
@classmethod
def setup_class(cls: type["BaseTest"]) -> None:
print(f"setting up CLASS {cls.__name__}")

@classmethod
def teardown_class(cls: type["BaseTest"]) -> None:
print(f"tearing down CLASS {cls.__name__}\n")

def setup_method(self, method: Callable[[], None]) -> None:
print(f"setting up METHOD {method.__name__}")

def teardown_method(self, method: Callable[[], None]) -> None:
print(f"tearing down METHOD {method.__name__}")

Finally, there are some concrete classes that contain ordinary test cases but get their setup and

teardown from a base class:

class TestClassl(BaseTest):
def test_method_1(self) -> None:
print ("RUNNING METHOD 1-1")

def test_method_2(self) -> None:
print ("RUNNING METHOD 1-2")

class TestClass2(BaseTest):
def test_method_1(self) -> None:
print ("RUNNING METHOD 2-1")

def test_method_2(self) -> None:
print ("RUNNING METHOD 2-2")

The purpose of the BaseTest class is to extract four methods that are otherwise identical to the
two test classes, and use inheritance to reduce the amount of duplicate code. So, from the point of

view of pytest, the two subclasses have not only two test methods each but also two setup and

424 Testing Object-Oriented Programs

two teardown methods (one at the class level and one at the method level).

If we run these tests using pytest with the print() function output suppression disabled (by
passing the -s or -capture=no flag), they show us when the various functions are called in relation

to the tests themselves:

% python -m pytest --capture=no tests/test_setup_teardown.py
test session starts
platform darwin -- Python 3.9.0, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
rootdir: /.../ch_13
collected 5 items
tests/test_setup_teardown.py setting up MODULE test_setup_teardown
RUNNING TEST FUNCTION
.setting up CLASS TestClassl
setting up METHOD test_method_1
RUNNING METHOD 1-1
.tearing down METHOD test_method_1
setting up METHOD test_method_2
RUNNING METHOD 1-2
.tearing down METHOD test_method_2
tearing down CLASS TestClassl
setting up CLASS TestClass2
setting up METHOD test_method_1
RUNNING METHOD 2-1
.tearing down METHOD test_method_1
setting up METHOD test_method_2
RUNNING METHOD 2-2
.tearing down METHOD test_method_2
tearing down CLASS TestClass2
tearing down MODULE test_setup_teardown
5 passed in 0.01s

The setup and teardown methods for the module as a whole are executed at the beginning and end
of the session. Then, the lone module-level test function is run. Next, the setup method for the
first class is executed, followed by the two tests for that class. These tests are each individually
wrapped in separate setup_method() and teardown_method() calls. After the tests have executed,
the teardown method on the class is called. The same sequence happens for the second class, before

the teardown_module () method is finally called, exactly once.

While these function names provide a lot of options for testing, we’ll often have setup conditions

that are shared across multiple test scenarios. These can be reused via a composition-based design;

Chapter 13 425

pytest calls these “fixtures” We’ll look at fixtures next.

pytest fixtures for setup and teardown

One of the most common uses for the various setup functions is to ensure that the GIVEN step of a
test is executed. This often involves creating objects and making sure that certain class or module

variables have known values before a test method is run.

In addition to a set of special method names for a test class, pytest offers a completely different
way of doing this, using what are known as fixtures. Fixtures are functions to build the GIVEN

condition, prior to a test’'s WHEN and THEN steps.

The pytest tool has a number of built-in fixtures. We can define fixtures in a configuration file
and reuse them, and we can define unique fixtures as part of our tests. This allows us to separate
configuration from the execution of tests, allowing fixtures to be used across multiple classes and

modules.

Let’s look at a class that does a few computations that we need to test:

from collections impoxrt defaultdict

class StatsList(list[float | None]):
"""Stats with None objects rejected"""

def mean(self) -> float:
clean = list(filter(None, self))
return sum(clean) / len(clean)

def median(self) -> float:
clean = list(filter(None, self))
if len(clean) % 2:
return clean[len(clean) // 2]
else:
idx = len(clean) // 2
return (clean[idx] + clean[idx - 11) / 2

def mode(self) -> list[float]:
freqs: defaultdict[float, int] = defaultdict(int)
for item in filter(None, self):
freqs[item] += 1
mode_freq = max(freqs.values())

426 Testing Object-Oriented Programs

modes = [item for item, value in freqs.items() if value ==
mode_freq]
return modes

This class extends the built-in 1ist class to add three statistical summary methods, mean (), median(),
and mode (). For each method, we need to have some set of data we can use; this configuration of a

StatsList with known data is the fixture we’ll be testing.

To use a fixture to create the GIVEN precondition, we add the fixture name as a parameter to our
test function. When a test runs, the names of the test function’s parameters will be located in the

collection of fixtures, and those fixture-creating functions will be executed for us automatically.

For example, to test the StatsList class, we want to repeatedly provide a list of valid integers. We

can write our tests as follows:

import pytest
from stats import StatsList

@pytest.fixture
def valid_stats() -> StatsList:
return StatslList([1, 2, 2, 3, 3, 4])

def test_mean(valid_stats: StatsList) -> None:
assert valid_stats.mean() == 2.5

def test_median(valid_stats: StatsList) -> None:

assert valid_stats.median() == 2.5
valid_stats.append(4)
assert valid_stats.median() == 3

def test_mode(valid_stats: StatsList) -> None:

assert valid_stats.mode() == [2, 3]
valid_stats.remove(2)
assert valid_stats.mode() == [3]

Each of the three test functions accepts a parameter named valid_stats; this parameter is created

by pytest automatically calling the valid_stats function for us. The function was decorated with

Chapter 13 427

@pytest.fixture so it could be used in this special way by pytest.

And yes, the fixture name must match the parameter name. The pytest runtime looks for functions

with the @fixture decorator that match the parameter name.

Fixtures can do a lot more than return simple objects. A request object can be passed into the
fixture factory to provide extremely useful methods and attributes to modify the fixture’s behavior.
The module, cls, and function attributes of the request object allow us to see exactly which test is
requesting the fixture. The config attribute of the request object allows us to check command-line

arguments and a great deal of other configuration data.

If we implement the fixture as a generator, it can also run cleanup code after each test is run. This
provides the equivalent of a teardown method on a per-fixture basis. We can use it to clean up files,
close connections, empty lists, or reset queues. For unit tests, where items are isolated, a mock
object is a better idea than performing a teardown on a stateful object. See the Imitating objects

using mocks section later in this chapter for a simpler approach that’s ideal for unit testing.

For integration tests, we might want to test some code that creates, deletes, or updates files. We’ll
often use the pytest tmp_path fixture to create a directory that can be deleted later, saving us from
having to do a teardown in a test. While rarely needed for unit testing, a teardown is helpful for
stopping subprocesses or removing database changes that are part of an integration test. We’ll
see this a little later in this section. First, let’s look at a small example of a fixture with setup and

teardown capabilities.

To get started on the concept of a fixture that does both setup and teardown, here’s a little bit of

code that makes a backup copy of a file and writes a new file with a checksum of an existing file:

from pathlib import Path
import hashlib

def checksum(source: Path, checksum_path: Path) -> None:
if checksum_path.exists():
backup = checksum_path.with_stem(f"(old) {checksum_path.stem}")
backup.write_text(checksum_path.read_text())
checksum = hashlib.sha256(source.read_bytes())
checksum_path.write_text(f"{source.name} {checksum.hexdigest()}\n")

There are two scenarios:

428 Testing Object-Oriented Programs

« The source file exists; a new checksum is added to the directory

« The source file and a checksum file both exist; in this case, the old checksum is copied to a

backup location and a new checksum is written

We won’t test both scenarios, but we will show how a fixture can create — and then delete — the
files required for a test sequence. We’ll focus on the second scenario because it’s more complex.

We’ll break the testing into two parts, starting with the fixture:

from collections.abc import Iterator
from pathlib impoxrt Path

import sys

import pytest

import checksum_writer

@pytest.fixture

def working_directory(tmp_path: Path) -> Iterator[tuple[Path, Path]]:
working = tmp_path / "some_directory"
working.mkdir()
source = working / "data.txt"
source.write_bytes(b"Hello, world!\n")
checksum = working / "checksum.txt"
checksum.write_text("data.txt 0ld_Checksum")
yield source, checksum
checksum.unlink()
source.unlink()

The yield statement is the secret for making this work. A fixture is a generator that produces one
result and then waits for the next request of a value. The first result that’s created is the result of a
number of steps: a working directory is created, a source file is created in the working directory,
and then an old checksum file is created. The yield statement provides two paths to the test and

waits for the next request. This work completes the GIVEN condition setup for the test.

When the test function finishes, pytest will try to get one final item from this fixture. This lets the
function unlink the files, removing them. There’s no return nor any second yield statement: the
generator simply exits. In addition to leveraging the generator protocol, the working_directory
fixture relies on a built-in pytest fixture, tmp_path, to create a temporary working location for this

test.

Here’s the test that uses this working_directory fixture:

Chapter 13 429

@pytest.mark.skipif(sys.version_info < (3, 9), reason="requires python3.9
feature")
def test_checksum(working_directory: tuple[Path, Path]) -> None:
source_path, old_checksum_path = working_directory
checksum_writer.checksum(source_path, old_checksum_path)
backup = old_checksum_path.with_stem(f"(old) {old_checksum_path.stem}")
assert backup.exists()
assert old_checksum_path.exists()
name, checksum = old_checksum_path.read_text().rstrip().split()

assert name == source_path.name
assert (
checksum == "d9014c4624844aa5bac314773d6b689a"

"d467fad4eld1a50a1b8a99d5a95f72ff5"

The test is marked with a skipif condition because this test won’t work in Python versions less
than 3.9; the with_stem() method of a Path isn’t part of the older pathlib implementation. This
assures us that the test is counted but noted as inappropriate for a specific Python release. We’ll

return to this in the Skipping tests with pytest section later in this chapter.

The reference to the working_directory fixture forces pytest to execute the fixture function,
providing the test scenario with two paths to be used as part of the GIVEN condition prior to
testing. The WHEN step evaluates the checksum_writer.checksum() function with these two
paths. The THEN steps are a sequence of assert statements to make sure that the files are created
with the expected values. After the test is run, pytest will use next() to get another item from the
fixture; this action executes the code after the yield, resulting in a teardown of two files after the

test has completed.

When testing components in isolation, we won’t often need to use the teardown feature of a fixture.
For integration tests, however, where a number of components are used in concert, it may be
necessary to stop processes, remove files, or reset the database state. In the next section, we’ll look

at a more sophisticated fixture. This kind of fixture can be used for more than a single test scenario.

More sophisticated fixtures

We can pass a scope parameter to create a fixture that needs to last longer than one test. This is
useful when setting up an expensive operation that can be reused by multiple tests. This works as
long as the resource reuse doesn’t break the atomic or unit nature of the test: one unit test should

not rely on, and should not be impacted by, any other unit test.

430 Testing Object-Oriented Programs

As an example, we’ll define a server that’s part of a client-server application. We want multiple web
servers to send their log messages to a single centralized log. In addition to isolated unit tests, we
need to have an integration test. This test makes sure the web server and the log collector properly

integrate with each other. The integration test will need to start and stop this log collection server.

There are at least three levels to the testing pyramid. Unit tests are the foundation, exercising
each component in isolation. Integration tests are the middle of the pyramid, making sure that the
components integrate properly with each other. A system test or acceptance test is the top of the

pyramid, making sure that the entire suite of software does what it claims.

We'll look at a log collection server that accepts messages and writes them to a single, central file.
These messages are defined by the logging module’s SocketHandler. We can depict each message
as a block of bytes with a header and a payload. In the following table, we’ve shown the structure

using slices of the block of bytes.

Here’s how a message is defined:

Slice [start:stop] Meaning Python function for parsing
[0:4] payload size | struct.unpack(“>L", bytes)
[4:payload_size+4] | payload pickle.loads(bytes)

Table 13.1: Structure of a Log Message

The size of the header is shown as a four-byte slice, but the size shown here can be misleading.
The header is formally and officially defined by the “>L” format string used by the struct module.
The struct module has a function, calcsize(), to compute the actual length of the format string.
Instead of using a literal 4, which is derived from the size of the “>L” format, our code will derive the
size, size_bytes, from the size format string, size_format. Using one proper source, size_format,

for both pieces of information follows the design principle of “Don’t Repeat Yourself”

Here’s an example buffer with a message from the 1ogging module embedded in it. The first line is
the header with the payload size, a four-byte value. The next lines are the pickled data for a log

message:

b'\x00\x00\x02d"
b'\}q\x00 (X\x04\x00\x00\x00nameq\x01X\x03\x00\x00\x00appq. . .

\x19X\n\x00\x00\x00MainThreadq\x1aX\x0b\x00\x00\x0@processNamegq\x1bX\x0b. . ."'

Chapter 13 431

To read these messages, we’ll need to collect the payload size bytes first. Then, we can consume the
payload that follows. Here’s the socket handler class that reads the headers and the payloads and

writes them to a file:

import json

from pathlib import Path
import pickle

import socketserver
import struct

import sys

from typing import TextIO

class LogDataCatcher(socketserver.BaseRequestHandler):
log_file: TextIO
count: int = 0
size_format = ">L"
size_bytes = struct.calcsize(size_format)

def handle(self) -> None:
size_header_bytes = self.request.recv(LogDataCatcher.size_bytes)
while size_header_bytes:
payload_size = struct.unpack(LogDataCatcher.size_format,
size_header_bytes)
print(f"{size_header_bytes=} {payload_size=}", file=sys.stderr)
payload_bytes = self.request.recv(payload_size[Q])
print(f"{len(payload_bytes)=}", file=sys.stderr)
payload = pickle.loads(payload_bytes)
LogDataCatcher.count += 1
print(f"{self.client_address[@]} {LogDataCatcher.count}
{payload!r}")
self.log_file.write(json.dumps(payload) + "\n")
try:
size_header_bytes =
self.request.recv(LogDataCatcher.size_bytes)
except (ConnectionResetError, BrokenPipeError):
break

The socketserver.TCPServer object will listen for connection requests from a client. When a client
connects, it will create an instance of the LogDataCatcher class and evaluate the handle () method
of that object to gather data from that client. The handle () method decodes the size and payload
with a two-step dance: get the size, payload_size, then get the payload. pickle.loads () will load

432 Testing Object-Oriented Programs

a Python object from the payload bytes. This is serialized into JSON notation using json.dumps()
and written to the open file. Once a message has been handled, we can try to read the next few bytes
to see whether there’s more data waiting. This server will absorb messages from the client until the

connection is dropped, leading to an error in the read and an exit from the while statement.

This log collection server can absorb logging messages from an application anywhere in a network.
This example implementation is single-threaded, meaning it only handles one client at a time. We
can use additional mixins to create a multithreaded server that will accept messages from multiple
sources. In this example, we want to focus on testing a single application that depends on this

Server.

For completeness, here’s the main function and script that starts the server running:

def main(host: str, port: int, target: Path) -> None:
with target.open("w") as unified_log:
LogDataCatcher.log_file = unified_log
with socketserver.TCPServer((host, port), LogDataCatcher) as server:
server.serve_forever()

if __name__ == "__main__":
HOST, PORT = "localhost", 18842
main(HOST, PORT, Path("one.log"))

As a practical matter, we might consider using the argparse module and the os.environ dictionary
to provide these values to the application. For now, we’ve hardcoded these configuration details as

literal values.
Here’s the remote_logging_app.py application, which transmits log records to the log-catching

Server:

import logging

import logging.handlexrs
import sys

from math import factorial

logger = logging.getLoggex("app")

def work(i: int) -> int:

Chapter 13 433

logger.info("Factorial %d", i)

f = factorial(i)
logger.info("Factorial(%d) = %d", i, f)
return f

if __name__ == "__main__":
HOST, PORT = "localhost", 18842
socket_handler = logging.handlers.SocketHandler (HOST, PORT)
stream_handler = logging.StreamHandler(sys.stderr)
logging.basicConfig(handlers=[socket_handler, stream_handler],
level=1logging.INFO)

for i in range(10):
work (1)

logging.shutdown()

This application creates two logging handlers. The SocketHandler instance will open a socket
on the given server and port number and start writing bytes. The bytes will include headers and
payloads. The StreamHandler instance will write to the terminal windows; this is the default log
handler that we would get if we didn’t create any special handlers. We configure our logger with
both handlers so that each log message goes to both our console and the stream server collecting

the messages.

The actual work? That’s almost lost in the overheads. We highlighted those two lines in the code
block. It does a little bit of math to compute the factorial of some numbers. Each time we run this

application, it should blast out 20 log messages.

To test the integration of the client and server, we need to start the server in a separate process. We
don’t want to start and stop it many times (that would take a while), so we will start it once and

use it in multiple tests. We’ll break this into two sections, starting with the two fixtures:

from collections.abc import Iterator
import logging

from pathlib impoxrt Path

import signal

import subprocess

import sys

import time

434 Testing Object-Oriented Programs

import pytest

import remote_logging_app

@pytest.fixture(scope="session")
def log_catcher() -> Iterator[None]:
server_path = Path("src") / "log_catcher.py
print(f"Starting server {server_path}")
p = subprocess.Popen(
[sys.executable, str(server_path)],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,

)

time.sleep(0.25)

yield

p.terminate()

p.wait()

if p.stdout:
print(p.stdout.read())

assert (
p.returncode == 1 if sys.platform == "win32" else
-signal.SIGTERM.value

), f"Error in watcher, returncode={p.returncode}"

@pytest.fixture

def logging_config() -> Iterator[None]:
HOST, PORT = "localhost", 18842
socket_handler = logging.handlers.SocketHandler (HOST, PORT)
remote_logging_app.logger.addHandler (socket_handler)
yield
socket_handler.close()
remote_logging_app.logger.removeHandler(socket_handler)

The log_catcher fixture will start the log_catcher.py server as a subprocess. This has a scope
set to “session” in the @fixture decorator, which means it’s done once for the whole testing
session. The scope can be one of the “function”, “class”, “module”, “package”, or “session”
strings, providing distinct places where the fixture is created and reused. The startup involves a

tiny pause (250 ms) to allow the child process to get started and be ready to accept connections.

Chapter 13 435

When this fixture reaches the yield statement, this part of the GIVEN test setup is done.

The logging_config fixture will tweak the log configuration for the remote_logging_app module
that’s being tested. When we look at the work () function in the remote_logging_app.py module,
we can see that it expects a module-level logger object. This test fixture creates a SocketHandler

object, adds this to the logger, and then executes the yield statement.

Once both of these fixtures have contributed to the GIVEN condition, we can define test cases that

contain the WHEN steps. Here are two examples of two similar scenarios:

def test_1(log_catcher: None, logging_config: None) -> None:
for i in range(10):
remote_logging_app.work(i)

def test_2(log_catcher: None, logging_config: None) -> None:
for i in range(1l, 10):
remote_logging_app.work(52 * i)

These two test scenarios both require the two fixtures. The log_catcher fixture, with a session
scope, is prepared once and used for both tests. The logging_config fixture, however, has default

scope, which means it’s prepared for each test function.

The type hint of None follows the definition of the fixture as Iterator[None]. There’s no value
returned by the yield statement. For these tests, the setup operation is preparing the overall

runtime environment by starting a process.

When a test function finishes, the logging_config fixture resumes after the yield statement. (This
fixture is a generator function, and the next () function is used to request a second value from it.)
This closes and removes the handler, cleanly breaking the network connection with the log catcher

process.

When testing finishes overall, the 1og_catcher fixture can then terminate the child process. To
help with debugging, we print any output. To be sure the test worked, we check the OS return
code. Because the process was terminated (via p.terminate()), the return code should be the
signal.SIGTERM value. Other return code values, particularly a return code of 1, mean that the log

catcher crashed and the test failed.

We’ve omitted a detailed THEN check, but it could also be part of the log_catcher fixture. The

existing assert statement makes sure that the log catcher terminated with the expected return

436 Testing Object-Oriented Programs

code. Once the catcher in the sky has finished absorbing log messages, this fixture should also read

the log file to be sure it contains the expected entries for the two scenarios.

Fixtures can also be parameterized. We can wuse a decorator such as
@pytest.fixture(params=[some, list, of, values]) tocreate multiple copies of a fixture, which

will lead to multiple tests with each of the given parameter values.

The sophistication of pytest fixtures makes them very handy for a wide variety of test setup and
teardown requirements. Earlier in this section, we hinted at ways to mark tests as inappropriate
for a particular version of Python. In the next section, we’ll look at how we can mark tests to be

skipped.

Skipping tests with pytest

It is sometimes necessary to skip tests. There can be a similar variety of reasons: the code being
tested hasn’t been written yet, the test only runs on certain interpreters or OSs, or the test is
time-consuming and should only be run when specifically requested. In the previous section, one

of our tests would not work in Python 3.8 and needed to be skipped.

One way to skip tests is by using the pytest.skip() function. It accepts a single argument: a string
describing why it has been skipped. This function can be called anywhere. If we call it inside a test
function, the test will be skipped. If we call it at the module level, all the tests in that module will
be skipped. If we call it inside a fixture, all tests that reference the fixture will be skipped.

Of course, in all these locations, it is often only desirable to skip tests if certain conditions have or
have not been met. Since we can execute the skip() function at any place in Python code, we can

execute it inside an if statement. We may write a test that looks as follows:

import sys
import pytest

def test_simple_skip() -> None:
if sys.platform != "ios":
pytest.skip("Test works only on Pythonista for ios")

import location # type: ignore [import]

img = location.render_map_snapshot(36.8508, -76.2859)
assert img is not None

Chapter 13 437

This test will skip on most OSs. It should run on the Pythonista port of Python for i0S. It shows how
we can skip a scenario conditionally, and since the if statement can check any valid conditional,
we have a lot of power over when tests are skipped. Often, we check sys.version_info to check
the Python interpreter version, sys.platform to check the OS, or some_library._ version__to

check whether we have a recent-enough version of a given module.

Since skipping an individual test method or function based on a condition is one of the most common
uses of test skipping, pytest provides a convenient decorator that allows us to do this in one line.
The decorator accepts a single string, which can contain any executable Python code that evaluates

to a Boolean value. For example, the following test will only run on Python 3.9 or higher:

import sys
import pytest

@pytest.mark.skipif(

sys.version_info < (3, 9), reason="requires 3.9, Path.removeprefix()"
)
def test_feature_python39() -> None:

file_name = "(old) myfile.dat"

assert file_name.removeprefix("(old) ") == "myfile.dat"

The pytest.mark.xfail decorator marks a test as expected to fail. If the test is successful, it will
be recorded as a failure (it failed to fail!). If it fails, it will be reported as expected behavior. In the
case of xfail, the conditional argument is optional. If it is not supplied, the test will be marked as

expected to fail under all conditions.

The pytest framework has a ton of other features besides those described here, and the developers
are constantly adding innovative new ways to make your testing experience more enjoyable. They

have thorough documentation on their website at https://docs.pytest.org/.

The pytest tool can find and run tests defined using the standard unittest library, in addition to
its own testing infrastructure. This means that if you want to migrate from unittest to pytest,

you don’t have to rewrite all your old tests.

We’ve looked at using a fixture to set up and tear down a complex environment for testing. This is
helpful for some integration tests, but a better approach may be to imitate an expensive object or
a risky operation. Additionally, any kind of teardown operation is inappropriate for unit tests. A

unit test isolates each software component as a separate unit to be tested. This means we’ll often

https://docs.pytest.org/

438 Testing Object-Oriented Programs

replace all of the interface objects with imitations, called “mocks,” to isolate the unit being tested.

Next, we’ll turn to creating mock objects to isolate units and imitate expensive resources.

Imitating objects using mocks

Isolated problems are easier to diagnose and solve. Figuring out why a gasoline car won’t start
can be tricky because there are so many interrelated parts. If a test fails, uncovering all the
interrelationships among software components makes diagnosis of the problem difficult. We often
want to isolate items by providing simplified imitations. It turns out there are two reasons to replace

perfectly good code with imitation (or “mock”) objects:

« The most common case is to isolate a unit under test. We want to create collaborating classes
and functions so we can test one unknown component in an environment of known, trusted

test fixtures.

« Sometimes, we want to test code that requires an object that is either expensive or risky
to use. Things such as shared databases, filesystems, and cloud infrastructures can be very

expensive to set up and tear down for testing.

In some cases, this may lead to designing an API to have a testable interface. Designing for testability
often means designing a more usable interface, too. In particular, we have to expose assumptions
about collaborating classes so we can inject a mock object instead of an instance of an actual

application class.

For example, imagine we have some code that keeps track of flight statuses in an external key-value
store (such as redis or memcached). We store the timestamp and the most recent status. The
implementation will require the redis service in order to work. However, this is not needed to

write unit tests. The unit tests don’t even need the redis client library. A mock can be used instead.

To run integration tests, the redis client library can be installed. Using a virtual environment such

as venv, this can be installed with the python -m pip install redis command.

Using a virtual environment manager such as uv or poetry means adding the dependency to the

project. The command for uv is uv add redis.

If you want to run this with a real redis server, you’ll also need to download and install redis.

This can be done as follows:

1. Download Docker Desktop to help manage this application. See https://www.docker. com

/products/docker-desktop.

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop

Chapter 13 439

2. Use the docker pull redis command from a Terminal window to download a redis server

image. This image can be used to build a running Docker container.

3. You can then start the server with docker run -p 6379:6379 redis. This will start a con-

tainer running the redis image. Then you can use this for integration testing.

An alternative that avoids Docker involves a number of platform-specific steps. See https:
//redislabs.com/ebook/appendix-a/ for a number of installation scenarios. The examples that
follow will assume Docker is being used; the minor changes that are required to switch to a native

installation of redis are left as an exercise for the reader.

Here’s some code that saves the status in a redis cache server:

import datetime

from enum impoxt Enum
from typing import cast
import redis

class Status(str, Enum):
CANCELLED = "CANCELLED"
DELAYED = "DELAYED"
ON_TIME = "ON TIME"

class FlightStatusTracker:
def __init_ (self) -> None:
self.redis = redis.Redis(host="127.0.0.1", port=6379, db=0)

def change_status(self, flight: str, status: Status) -> None:
if not isinstance(status, Status):
raise ValueError(f"{status!r} is not a valid Status")
key = f"flightno:{flight}"
now = datetime.datetime.now(tz=datetime.timezone.utc)
value = f"{now.isoformat()}|{status.value}"
self.redis.set(key, value)

def get_status(
self, flight: str
) -> tuple[datetime.datetime | None, Status | None]:
key = f"flightno:{flight}"
value = cast(str, self.redis.get(key))
if value:

https://redislabs.com/ebook/appendix-a/
https://redislabs.com/ebook/appendix-a/

440 Testing Object-Oriented Programs

text_timestamp, text_status = value.split("|")
timestamp = datetime.datetime.fromisoformat(text_timestamp)
status = Status(text_status)
return timestamp, status
return None, None

The Status class defines an enumeration of four string values. We’ve provided symbolic names
such as Status.CANCELLED so that we can have a finite, bounded domain of valid status values. The
actual values stored in the database will be strings such as “CANCELLED” that — for now — happen
to match the symbols we’ll be using in the application. In the future, the domain of values may
expand or change, but we’d like to keep our application’s symbolic names separate from the strings
that appear in the database. It’s common to use numeric codes with Enum, but they can be difficult

to remember.

There are a lot of things we ought to test for in the change_status() method. We check to be
sure that the status argument value really is a valid instance of the Status enumeration, but we
could do more. We should check that it raises the appropriate error if the flight argument value
isn’t sensible. More importantly, we need a test to prove that the key and value have the correct

formatting when the set () method is called on the redis object.

One thing we don’t have to check in our unit tests, however, is that the redis object is storing
the data properly. This is something that absolutely should be tested in integration or application
testing. At the unit test level, we need to assume that the py-redis developers have tested their
code and that this method does what we want it to. As a rule, unit tests should be self-contained;

the unit under test should be isolated from outside resources, such as a running Redis instance.

Instead of integrating with a Redis server, we only need to test that the set() method was called
the appropriate number of times and with the appropriate arguments. We can use Mock () objects
in our tests to replace the troublesome method with an object we can introspect. The following

example illustrates the use of Mock:

import datetime
from unittest.mock import Mock, patch, call
import pytest

import flight_status_redis

Chapter 13 441

@pytest.fixture

def mock_redis() -> Mock:
mock_redis_instance = Mock(set=Mock(return_value=True))
return mock_redis_instance

@pytest.fixture
def tracker(
monkeypatch: pytest.MonkeyPatch,
mock_redis: Mock
) -> flight_status_redis.FlightStatusTracker:
"""Depending on the test scenario, this may require a running REDIS
server."""
fst = flight_status_redis.FlightStatusTracker()
monkeypatch.setattr(fst, "redis", mock_redis)
return fst

def test_monkeypatch_class(
tracker: flight_status_redis.FlightStatusTracker,
mock_redis: Mock
) -> None:
with patch.object(tracker, "redis", mock_redis):
with pytest.raises(ValueError) as ex:
tracker.change_status("AC101", "lost") # type: ignore [arg-type]
assert ex.value.args[@] == "'lost' is not a valid Status"
assert mock_redis.set.call_count ==

This test uses the pytest.raises context manager to make sure the correct exception is raised
when an inappropriate argument is passed in. In addition, it creates a Mock object for the redis

instance that FlightStatusTracker will use

The Mock object contains an attribute, set, which is a mock method that will always return True.
The test, however, makes sure that the redis.set() method is never called. If it is, it means there

is a bug in our exception-handling code.

Note the navigation into the mock object. We use mock_redis.set to examine the mocked set()
method of a Mock object created by the mock_redis fixture. call_count is an attribute that all Mock

objects maintain.

442 Testing Object-Oriented Programs

While we can use code such as flt.redis = mock_redis to replace a real object with a Mock object
during a test, there is potential for problems. Simply replacing a value or even replacing a class
method can only work for objects that are destroyed and created for each test function. If we
need to patch items at the module level, the module isn’t going to be reimported. A much more
general solution is to use a patcher to inject a Mock object temporarily. In this example, we used the
monkeypatch fixture of pytest to make a temporary change to the FlightStatusTracker object. A
monkeypatch has its own automatic teardown at the end of a test, allowing us to use monkeypatched

modules and classes without breaking other tests.

This test case will be flagged by mypy. The mypy tool will object to using a string argument value
for the status parameter of the change_status () function; this clearly must be an instance of the
Status enumeration. A special comment can be added to silence the mypy argument type check,

type: ignore [arg-type].

Additional patching techniques

In some cases, we only need to inject a special function or method for the duration of a single test.
We may not really be creating a sophisticated Mock object that’s used in multiple tests. In the case
of an isolated mock, we may not need to use all the features of the monkeypatch fixture, either. For
example, if we want to test the timestamp formatting in the Mock method, we need to know exactly
what datetime.datetime.now() is going to return. However, this value changes from run to run.

We need some way to pin it to a specific datetime value so we can test it deterministically.

Temporarily setting a library function to a specific value is one place where patching is essential. In
addition to the monkeypatch fixture, the unittest.mock library provides a patch context manager.
This context manager allows us to replace attributes on existing libraries with mock objects. When
the context manager exits, the original attribute is automatically restored so as not to impact other

test cases. Here’s an example:

def test_patch_class(
tracker: flight_status_redis.FlightStatusTracker,
mock_redis: Mock
) -> None:
fake_now = datetime.datetime (2020, 10, 26, 23, 24, 25)
utc = datetime.timezone.utc
with patch.object(tracker, "redis", mock_redis):
with patch("flight_status_redis.datetime") as mock_datetime:

Chapter 13 443

mock_datetime.datetime = Mock(now=Mock(return_value=fake_now))
mock_datetime.timezone = Mock(utc=utc)
tracker.change_status("AC101", flight_status_redis.Status.ON_TIME)
mock_datetime.datetime.now.assert_called_once_with(tz=utc)
expected = "2020-10-26T23:24:25|0ON TIME"
mock_xredis.set.assert_called_once_with("flightno:AC101", expected)

We don’t want our test results to depend on the computer’s clock, so we built the fake_now object
with a specific date and time we can expect to see in our test results. This kind of replacement is

very common in unit tests.

The patch() context manager returns a Mock object that was used to replace some other object. In
this case, the object being replaced is the entire datetime module inside the flight_status_redis
module. When we assigned mock_datetime.datetime, we replaced the datetime class inside the
mocked datetime module with our own Mock object; this new Mock defines one attribute, now.
Because the utcnow attribute is a Mock object that returns a value, it behaves like a method and
returns a fixed, known value, fake_now. When the interpreter exits the patch context manager, the

original datetime functionality is restored.

After calling our change_status () method with known values, we use the

assert_called_once_with() method of the Mock object to ensure that the now() function was
indeed called exactly once with the expected arguments (no arguments, in this case). We also use
the assert_called_once_with() method on the Mock redis.set method to make sure it was called
with arguments that were formatted as we expected them to be. In addition to the “called once
with” methods, we can also check the exact list of mock calls that were made. This sequence is

available in the mock_calls attribute of a Mock object.

Mocking dates so you can have deterministic test results is a common patching scenario. The
technique applies to any stateful object but is particularly important for external resources (such as

the clock) that exist outside our application.

For the special case of datetime and time, packages such as freezegun can simplify the monkey-

patching required so that a known, fixed date is available.

The patches we made in this example are intentionally sweeping. We replaced the entire datetime
module with a Mock object. This will tend to expose unexpected uses of datetime features; if any
method not specifically mocked (like the now() method was mocked) gets used, it will return Mock

objects that are likely to crash code under test.

444 Testing Object-Oriented Programs

The previous example also shows how testability needs to guide our API design. The tracker
fixture has an interesting problem: it creates a FlightStatusTracker object, which constructs a
Redis connection. After the Redis connection is built, we replace it. When we run tests for this
code, however, we will discover that each test will create an unused Redis connection. Some tests
may fail if there is no Redis server running. Because this test requires external resources, it’s not a
proper unit test. There are two possible layers of failure: the code doesn’t work or the unit tests

don’t work because of some hidden external dependency. This can become a nightmare to sort out.

We could solve this problem by mocking the redis.Redis class. A Mock for this class can return
a mock instance in a setUp method. A better idea, however, might be to rethink our imple-

mentation more fundamentally. Instead of constructing the redis instance inside __init__, we

should allow the collaborating object to pass one in. This reduction in the coupling between the
FlightStatusTracker class and the persistence mechanism permits easier refactoring as well as

better testing. Here’s an example:

class FlightStatusTracker_Alt:
def __init_ (self, redis_instance: redis.Connection | None = None) ->
None:
self.redis = (
redis_instance
if redis_instance
else redis.Redis(host="127.0.0.1", port=6379, db=0)

This allows us to pass a connection in when we are testing. The idea for this follows from the
Interface Segregation principle: we don’t want our status tracker to also have Redis initialization
buried inside it. This changed design allows any client code that talks to FlightStatusTracker
to pass in its own redis instance. This permits using the Decoration design pattern to create a
wrapper around Redis to do additional application-specific processing such as auditing or logging.
There are a variety of reasons why they might want to do this: they may have already constructed
one for other parts of their code; they may have created an optimized implementation of the redis
AP or perhaps they have one that logs metrics to their internal monitoring systems. By writing a
unit test, we’ve uncovered a use case that makes our API more flexible from the start, rather than

waiting for clients to demand that we support their exotic needs.

This has been a brief introduction to the wonders of mocking code. Mock objects have been part

of the standard unittest library since Python 3.3. As you can see from these examples, they can

Chapter 13 445

also be used with pytest and other test frameworks. Mock objects have other, more advanced
features that you may need to take advantage of as your code becomes more complicated. For
example, you can use the spec argument to invite a mock to imitate an existing class, so that it
raises an error if code tries to access an attribute that does not exist on the imitated class. You can
also construct mock methods that return different arguments each time they are called by passing a
list as the side_effect argument. The side_effect parameter is quite versatile; you can also use

it to execute arbitrary functions when the mock is called or to raise an exception.

The point of unit testing is to be sure that each “unit” works in isolation. Often, a unit is an individual
class, and we’ll need to mock the collaborators. In some cases, there’s a composition of classes or a
Facade for which a number of application classes can be tested together as a “unit” There’s a clear
boundary, however. If we need to look inside some external module or class (one we didn’t write)
to see how to mock its dependencies, we’ve taken a step too far. Needing to mock internal states of
objects we didn’t write means we’ve broken an encapsulation boundary.
Don’t examine the implementation details of classes outside your application to
N

-@- see how to mock their collaborators; instead, mock the entire class you depend on.
d N

This often leads to providing a mock for an entire database or external APL

We can extend this idea of imitating objects one step further. There’s a specialized fixture we use

when we want to ensure data has been left untouched. We’ll look at this next.

The sentinel object

In many designs, we’ll have a class with attribute values that will be provided as parameters to
other objects, without really doing any processing on those objects. For example, we may provide
a Path object to a class, and the class then provides this Path object to an OS function; the class
we designed doesn’t do any processing to change the internal state of the the Path object. From a
unit testing perspective, the object is “opaque” to the class we're testing — the class we’re writing

doesn’t look inside the object at state or methods.

The unittest.mock module provides a handy object, sentinel, that can be used to create opaque
objects that we can use in test cases to be sure that the application stored and forwarded some

object without any meddling.

Here’s a class, FileChecksum, that saves an object computed by the sha256() function of the

hashlib module:

446 Testing Object-Oriented Programs

class FileChecksum:
def __init_ (self, source: Path) -> None:
self.source = source
self.checksum = hashlib.sha256(source.read_bytes())

We can isolate this code from the other modules for unit testing purposes. We’ll create a Mock for

the hashlib module, and we’ll use a sentinel for the result:

from unittest.mock import Mock, sentinel
from typing import Any

@pytest.fixture

def mock_hashlib(monkeypatch: Any) -> Mock:
mocked_hashlib = Mock(sha256=Mock(return_value=sentinel.checksum))
monkeypatch.setattr(checksum_writer, "hashlib", mocked_hashlib)
return mocked_hashlib

def test_file_checksum(mock_hashlib: Mock, tmp_path: Any) -> None:
source_file = tmp_path / "some_file"
source_file.write_text("")
cw = checksum_writer.FileChecksum(source_file)
assert cw.source == source_file
assert cw.checksum == sentinel.checksum

Our mocked_hashlib object provides a method, sha256, that returns a unique sentinel.CHECKSUM
object. This object, created by the sentinel object, has very few methods or attributes. These
resulting objects are designed for equality checks and nothing else. A sentinel in a test case is a
way to be sure the FileChecksum class doesn’t do anything wrong or unexpected with the checksum

objects it will be given.

The test case creates a FileChecksum object. The test confirms that the file was the provided
argument value, source_file. The test also confirms that the checksum matched the original
sentinel object. This confirms that the FileChecksum instance stored the checksum results properly

and presented the result as the value of the checksum attribute.

If we change the implementation of the FileChecksum class to — for example — use properties
instead of direct access to the attribute, the test will confirm the checksum was treated as an opaque

object that came from the hashlib.sha256() function and was not processed in any other way.

Chapter 13 447

We’ve looked at two unit testing frameworks: the built-in unittest package and the external
pytest package. They both provide ways for us to write clear, simple tests that can confirm that our
application works. It’s important to have a clear objective defining the required amount of testing.

Python has an easy-to-use coverage package that gives us one objective measure of test quality.

How much testing is enough?

We’ve already established that untested code is broken code. But how can we tell how well our
code is tested? How do we know how much of our code is actually being tested and how much is
broken? The first question is the more important one, but it’s hard to answer. Even if we know we
have tested every line of code in our application, we do not know that we have tested it completely.
For example, if we write a stats test that only checks what happens when we provide a list of
integers, it may still fail spectacularly if used on a list of floats, strings, or self-made objects. The

onus of designing complete test suites still lies with the programmer.

The second question — how much of our code is actually being tested — is easy to verify. Code
coverage is a count of the number of lines of code that are executed by a program. From the number
of lines that are in the program as a whole, we know what percentage of the code was really tested
or covered. If we additionally have an indicator that tells us which lines were not tested, we can

more easily write new tests to ensure that those lines are less likely to harbor problems.

The most popular tool for testing code coverage is called, memorably enough, coverage.py. It
can be installed like most other third-party libraries, using the python -m pip install coverage
command, or a command such as uv add coverage -dev when using an environment manager

such as uv.

We don’t have space to cover all the details of the coverage API, so we’ll just look at a few typical
examples. If we have a Python script that runs all our unit tests for us (this could be using
unittest.main, unittest discover, or pytest), we can use the following command to perform

coverage analysis for a specific unit test file:

% export PYTHONPATH="$ (pwd)/sxc:$PYTHONPATH"

% coverage run -m pytest tests/test_coverage.py

This command will create a file named . coverage, which holds the data from the run.

Windows PowerShell users can do the following:

448 Testing Object-Oriented Programs

> $ENV:PYTHONPATH = "$pwd\sxc" + ";" + $PYTHONPATH

> coverage run -m pytest tests/test_coverage.py

We can now use the coverage report command to get an analysis of the code coverage:

% coverage report

The resulting output should be as follows:

Stmts Miss

src/stats.py
tests/test_coverage.py

This report lists the files that were executed (our unit test and the module it imported), the number
of lines of code in each file, and the number of lines of code that were executed by the test. The two
numbers are then combined to show the amount of code coverage. Not surprisingly, the entire test

was executed, but only a fraction of the stats module was exercised.

If we pass the -m option to the report command, it will add a column that identifies the lines that

are missing from the test execution. The output looks as follows:

Cover Missing

src/stats.py

tests/test_coverage.py

The ranges of lines listed here identify the lines in the stats module that were not executed during

the test run.

The example code uses the same stats module we created earlier in this chapter. However, it

deliberately uses a single test that fails to test a lot of code in the file. Here’s the test:

Chapter 13 449

import pytest
from stats import StatslList

@pytest.fixture
def valid_stats() -> StatsList:
return StatsList([1, 2, 2, 3, 3, 4])

def test_mean(valid_stats: StatsList) -> None:
assert valid_stats.mean() == 2.5

This test doesn’t test the median or mode functions, which correspond to the line numbers that the

coverage output told us were missing.

It can be helpful to include more than the src directory tree in coverage analysis. A large project
may have a complex tests directory, including additional tools and supporting libraries. As the
project evolves, there may be some test or support code that’s obsolete but hasn’t been cleaned up

yet.

Unfortunately, if we could somehow run a coverage report on this section of the chapter, we’d find
that we have not covered most of what there is to know about code coverage! It is possible to use
the coverage API to manage code coverage from within our own programs (or test suites). Further,
coverage.py accepts numerous configuration options that we haven’t touched on. We also haven’t
discussed the difference between statement coverage and branch coverage (the latter is much more

useful and is the default in recent versions of coverage.py), or other styles of code coverage.

Bear in mind that while 100 percent code coverage is a goal that we should all strive for, 100
percent coverage is not enough! Just because a statement was tested, does not mean that it was
tested properly for all possible inputs. The boundary value analysis technique includes looking
at five values to bracket the edge cases: a value below the minimum, the minimum, in the middle
somewhere, the maximum, and a value above the maximum. For non-numeric types, there may not
be a tidy range, but the advice can be adapted to other data structures. For lists and mappings, for

example, this advice often suggests testing with empty lists or mapping with unexpected keys.

Looking at other tools, the Hypothesis package (https://pypi.org/project/hypothesis/)
can help with more sophisticated test cases. This is particularly helpful when working with more

complicated scientific or statistical computations.

https://pypi.org/project/hypothesis/

450 Testing Object-Oriented Programs

It’s difficult to emphasize how important testing is. The test-driven development approach encour-
ages us to describe our software via visible, testable objectives. We have to decompose complex
problems into discrete, testable solutions. It’s not uncommon to have more lines of test code than
actual application code. A short but confusing algorithm is sometimes best explained through

examples, and each example should be a test case.

Testing and development

One of the many ways unit tests can help is when debugging application problems. When each unit
seems to work in isolation, any remaining problems will often be the result of an improperly used
interface between components. When searching for the root cause of a problem, a suite of passing
tests acts as a set of signposts, directing the developer into the wilderness of untested features in

the borderlands between components.
When a problem is found, the cause is often one of the following:

« Someone writing a new class failed to understand an interface with an existing class and
used it incorrectly. This indicates a need for a new unit test to reflect the right way to use
the interface. This new test should cause the new code to fail its expanded test suite. An
integration test is also helpful but not as important as the new unit test focused on interface

details.

« The interface was not spelled out in enough detail, and both parties using the interface need
to reach an agreement on how the interface should be used. In this case, both sides of the
interface will need additional unit tests to show what the interface should be. Both classes
should fail these new unit tests; they can then be fixed. Additionally, an integration test can

be used to confirm that the two classes agree.

The idea here is to use test cases to drive the development process. A “bug” or an “incident” needs
to be translated into a test case that fails. Once we have a concrete expression of a problem in the

form of a test case, we can create or revise software until all the tests pass.
If bugs do occur, we’ll often follow a test-driven plan, as follows:

1. Write a test (or multiple tests) that duplicates or proves the bug in question is occurring.
This test will, of course, fail. In more complex applications, it may be difficult to find the
exact steps to recreate a bug in an isolated unit of code; finding this is valuable work, since it

requires knowledge of the software and captures the knowledge as a test scenario.

Chapter 13 451

2. Then, write the code to make the tests stop failing. If the tests were comprehensive, the bug
will be fixed, and we will know that we didn’t break something new while attempting to fix

something.

Another benefit of test-driven development is the value of the test cases for further enhancement.
Once the tests have been written to identify the problem, we can improve our code as much as we
like and be confident that our changes won’t break anything we have been testing for. Furthermore,

we know exactly when our refactor is finished: when the tests all pass.

Of course, our tests may not comprehensively test everything we need them to; maintenance or
code refactoring can still cause undiagnosed bugs that don’t show up in testing. Automated tests
are not foolproof. As E. W. Dijkstra said, “Program testing can be used to show the presence of
bugs, but never to show their absence!” We need to have good reasons why our algorithm is correct,

as well as test cases to show that it doesn’t have any problems.

Recall

In this chapter, we’ve looked at a number of topics related to testing applications written in Python.

These topics include the following:

« We described the importance of unit testing and test-driven development as a way to be sure

that our software does what is expected.

« We started by using the unittest module because it’s part of the standard library and readily
available. It seems a little wordy but otherwise works well for confirming that our software

works.

« The pytest tool requires a separate installation, but it seems to produce tests that are slightly
simpler than those written with the unittest module. More importantly, the sophistication

of the fixture concept lets us create tests for a wide variety of scenarios.

« The mock module, part of the unittest package, lets us create mock objects to better isolate
the unit of code being tested. By isolating each piece of code, we can narrow our focus
to being sure that it works and has the right interface. This makes it easier to combine

components.

« Code coverage is a helpful metric to ensure that our testing is adequate. Simply adhering
to a numeric goal is no substitute for thinking, but it can help to confirm that efforts were

made to be thorough and careful when creating test scenarios.

452 Testing Object-Oriented Programs

We’ve been looking at several kinds of tests with a variety of tools:

« Unit tests with the unittest package or the pytest package, often using Mock objects to

isolate the fixture or unit being tested.

« Integration tests, also with unittest and pytest, where more complete integrated collections

of components are tested.

« Static analysis can use mypy to examine the data types to be sure they’re used properly. This
is a kind of test to ensure that the software is acceptable. There are other kinds of static tests,

and tools such as flake8, pylint, and pyflakes can be used for these additional analyses.

Some research will turn up scores of additional types of tests. Each distinct type of test has a distinct
objective or approach to confirming that the software works. A performance test, for example,

seeks to establish that the software is fast enough and uses an acceptable number of resources.

We can’t emphasize enough how important testing is. Without automated tests, software can’t be
considered complete, or even usable. Starting from test cases lets us define the expected behavior in

a way that’s specific, measurable, achievable, results-based, and trackable: SMART.

Exercises

Practice test-driven development. That is your first exercise. It’s easier to do this if you’re starting a
new project, but if you have existing code that you need to work on, you can start by writing tests
for each new feature you implement. This can become frustrating as you become more enamored
with automated tests. The old, untested code will start to feel rigid and tightly coupled, and will
become uncomfortable to maintain; you’ll start feeling like changes you make are breaking the code
and you have no way of knowing, for lack of tests. But if you start small, adding tests to the code

base improves it over time. It’s not unusual for there to be more test code than application code!

So, to get your feet wet with test-driven development, start a fresh project. Once you’ve started to
appreciate the benefits (you will) and realize that the time spent writing tests is quickly regained in
terms of more maintainable code, you’ll want to start writing tests for existing code. This is when
you should start doing it, not before. Writing tests for code that we know works is boring. It is hard
to get interested in the project until we realize just how broken the code we thought was working

really is.

Try writing the same set of tests using both the built-in unittest module and pytest. Which do you

prefer? unittest is more similar to test frameworks in other languages, while pytest is arguably

Chapter 13 453

more Pythonic. Both allow us to write object-oriented tests and test object-oriented programs with

ease.

Try running a coverage report on the tests you’ve written. Did you miss testing any lines of code?
Even if you have 100 percent coverage, have you tested all the possible inputs? If you’re doing
test-driven development, 100 percent coverage should follow quite naturally, as you will write a
test before the code that satisfies that test. However, if you’re writing tests for existing code, it is

more likely that there will be edge conditions that go untested.

When creating test cases, it can help to think carefully about the values that are somehow different,

such as the following, for example:
« Empty lists when you expect full ones
« Negative numbers, zero, one, or infinity compared to positive integers
« Floats that don’t round to an exact decimal place
« Strings when you expected numerals
« Unicode strings when you expected ASCII
« The ubiquitous None value when you expected something meaningful

If your tests cover such edge cases, your code will be in good shape.

Summary

We have finally covered the most important topic in Python programming: automated testing.
Test-driven development is considered a best practice. The standard library unittest module
provides a great out-of-the-box solution for testing, while the pytest framework has some more
Pythonic syntax. Mocks can be used to emulate complex classes in our tests. Code coverage gives
us an estimate of how much of our code is being run by our tests, but it does not tell us that we

have tested the right things.

In the next chapter, we’ll jump into a completely different topic: concurrency.

454 Testing Object-Oriented Programs

Join our community Discord space

Join our Python Discord workspace to discuss and know more about the book: https://packt.1i

nk/dHrHU

=] T [u]

https://packt.link/dHrHU
https://packt.link/dHrHU

14

Concurrency

Concurrency is the art of making a computer do (or appear to do) multiple things at once. Historically,
this meant inviting the processor to switch between different tasks many times per second. In
modern systems, it can also mean doing two or more things simultaneously on separate processor

cores.

Concurrency is not inherently an object-oriented topic, but Python’s concurrent systems provide

object-oriented interfaces. This chapter will introduce you to the following topics:
+ Threads
+ Multiprocessing
- Futures
« AsynclO
+ The dining philosophers benchmark

Concurrent processes can become complicated. The basic concepts are fairly simple, but the
bugs that can occur are notoriously difficult to track down when the sequence of state changes is
unpredictable. However, for many projects, concurrency is the only way to get the performance we

need. Imagine if a web server couldn’t respond to a user’s request until another user’s request had

456 Concurrency

been completed! We’ll see how to implement concurrency in Python, and some common pitfalls to

avoid.

The Python language explicitly executes statements in order. To consider concurrent execution of

statements, we’ll need to take a step away from Python.

Background on concurrent processing

Conceptually, it can help to think of concurrent processing by imagining a group of people who
can’t see each other and are trying to collaborate on a task. Perhaps their vision is impaired or
blocked by screens, or their workspace has awkward doorways that they can’t quite see through.

These people can, however, pass tokens, notes, and work-in-progress to each other.

Imagine a small delicatessen in an old seaside resort city (on the Atlantic coast of the US) with an
awkward counter-top layout. The awkward layout of the old building means that the two sandwich
chefs can’t see or hear each other. While the owner can afford to pay two fine chefs, the owner can’t
afford more than one serving tray. Due to the awkward complications of the beach boardwalk, the
chefs can’t even see the tray, either. They’re forced to reach down below their counter to be sure
the serving tray is in place. Then, assured the tray is there, they carefully place their work of art —
complete with pickles and a few of the house-made potato chips — onto the tray. (Yes, they can’t

see the tray, but they’re spectacular chefs who can place a sandwich, pickles, and chips flawlessly.)

The owner, however, can see the chefs. Indeed, passers-by can watch the chefs work. It’s a great
show. The owner typically deals the order tickets out to each chef in strict alternation. And
ordinarily, the one and only serving tray can be placed so the sandwich arrives and is presented
at the table with a flourish. The chefs, as we said, have to wait to feel the tray before their next

creation warms someone’s palate.

Then, one day, one of the chefs (we’ll call him Michael, but his friends call him Mo) is nearly done
with an order, but has to run to the cooler for more of those dill pickles everyone loves. This delays
Mo’s prep time, and the owner sees that the other chef, Constantine, looks like he’ll finish just a
fraction of a second before Mo. Even though Mo has returned with the pickles and is ready with
the sandwich, the owner does something embarrassing. Remember the rule: check first, then place
the sandwich. Everyone in the shop knows this. The owner moves the tray from the opening below
Mo’s station to the opening below Constantine’s. Mo places his creation — what would have been a
delightful Reuben sandwich with extra sauerkraut — into the empty space where a tray should have

been, where it splashes onto the delicatessen floor, a horrifying waste of rye bread and corned beef.

Chapter 14 457

How could the foolproof method of checking for the tray then depositing the sandwich have failed
to work? It had survived the test of many busy lunch hours, and yet a small disruption in the
regular sequence of events leads to a mess. The separation in time between testing for the tray and

depositing the sandwich turned into an opportunity for the owner to make a state change.

There’s a race between the owner and chefs. Preventing unexpected state changes is the essential

design problem for concurrent programming.

One solution could be to use a semaphore — a flag — to prevent unexpected changes to the tray.
This is a kind of shared lock. Each chef is forced to seize the flag before plating, and once they have
the flag, they can be confident that the owner won’t move the tray. Similarly, the owner must seize
the flag before moving the tray. And, each participant must return the flag to the little flag-stand

when they’ve finished plating or serving.

Concurrent work requires some method for synchronizing access to shared resources. One essential
power of large, modern computers is managing concurrency through operating system features,

collectively called the kernel.

Older and smaller computers, with a single core in a single CPU, had to interleave everything.
The clever coordination made things appear to be working at the same time. Newer multi-core
computers (and large multi-processor computers) can actually perform operations concurrently,

making the scheduling of work a bit more involved.
We have several ways to achieve concurrent processing:

+ The operating system lets us run more than one program at a time. The Python subprocess
module gives us ready access to these capabilities. The multiprocessing module also
provides a number of convenient ways to handle multiple processes. This is relatively easy
to start, but each process is carefully sequestered from all other processes. How can they

share data?

« Some clever software libraries allow a single program to have multiple concurrent threads of
operation within a single process. The Python threading module gives us access to handle
multiple threads. This is more complex to get started, and each thread has complete access

to the data in all other threads. How can we coordinate updates to shared data structures?

Additionally, concurrent. futures and asyncio provide easier-to-use wrappers around the under-
lying libraries. We’ll start this chapter by looking at Python’s use of the threading library to allow

many things to happen concurrently in a single operating system process. This is simple but has

458 Concurrency

some challenges when working with shared data structures.

Threads

A thread is a sequence of Python byte-code instructions that may be interrupted and resumed. The
idea is for a process to execute via separate, concurrent threads. This will allow computation to

proceed while the program is waiting for I/O to happen.

For example, a server can start processing a new network request while it waits for data from a
previous request to arrive. Or an interactive program might render an animation or perform a
calculation while waiting for the user to press a key. Bear in mind that while a person can type
more than 500 characters per minute, a computer can perform billions of instructions per second.

Thus, a ton of processing can happen between individual key presses, even when typing quickly.

It’s theoretically possible to manage all of this switching between activities within your program,
but it would be virtually impossible to get right. Instead, we can rely on Python and the operating
system to take care of the tricky switching part, while we create objects that appear to be running

independently but simultaneously. These objects are called threads.

Let’s take a look at a basic example. We've decomposed the chef’s actions into getting the next order
and then preparing the order. Right now, the work involved in getting the next order is minimal,
but it’s also something that can change in other implementations; this leaves a one-line function,
which seems like a lot of overhead for such a small thing. It makes the small thing (getting an order)
visible and changeable, which outweighs the overheads. We’ll start with an essential definition of

the thread’s processing, as shown in the following class:

class Chef(Thread):
def __init_ (self, name: str) -> None:
super().__init__(name=name)
self.total = 0@

def get_order(self) -> None:
self.order = THE_ORDERS.pop(Q)

def prepare(self) -> None:
"""Simulate doing a lot of work with a BIG computation"""
start = time.monotonic()
target = start + 1 + random.random()
for i in range(1_000_000_000) :

Chapter 14 459

self.total += math.factorial(i)
if time.monotonic() >= target:
break
print (f"{time.monotonic():.3f} {self.name} made {self.order}")

def run(self) -> None:
while True:
try:
self.get_order()
self.prepare()
except IndexError:
break # No more orders

Note that the prepare() method does a great deal of computation until it reaches some given time.
The idea is to occupy the CPU (or at least one core) as fully as possible. In some examples, folks
will use the sleep() function, but this gives up the CPU so other processes can use it. We want to

see the CPU spike during preparation.

A thread in our running application must extend the Thread class and implement the run method.
Any code executed by the run method will be a separate thread of processing, scheduled indepen-
dently. Our thread is relying on a global variable, THE_ORDERS, which is a shared object. This could
be a queue or some other structure that provides a series of values. Here’s how this example defines

this shared global object:

import math

import random

from threading import Thread
import time

THE_ORDERS = [
"Reuben",
"Ham and Cheese",
"Monte Cristo",
"Tuna Melt",
"Cuban",
"Grilled Cheese",
"French Dip",
"BLT",

460 Concurrency

In this case, we’ve defined the orders as a simple, fixed list of values. In a larger application, we
might be reading these from a socket or a queue object. Here’s the top-level program that starts

things running:

Mo = Chef("Michael")
Constantine = Chef("Constantine")

if __name__ == "__main__":
random.seed(42)
Mo.start()

Constantine.start()

This will create two threads. The new threads don’t start running until we call the start() method
on the object. When the two threads have started, they both pop a value from the list of orders and

then commence to perform a large computation and — eventually — report their status.

The output looks like this:

Constantine made Ham and Cheese
Michael made Reuben

Constantine made Monte Cristo
Michael made Tuna Melt
Constantine made Cuban

Michael made Grilled Cheese
Michael made BLT

Constantine made French Dip

i,
1.
2.
2.
4.
4.
5.
5.

Note that the sandwiches aren’t completed in the exact order that they were presented in the
THE_ORDERS list. Each chef works at their own (randomized) pace. Changing the random generator

seed will change the times and may adjust the order slightly.
| Using seed() provides repeatable sequences of random numbers. This is helpful
':@:' when testing software because it provides results that are difficult to predict but

perfectly repeatable.

What’s important about this example is that the threads are sharing data structures. The concurrency
is an illusion created by clever scheduling of the threads to interleave work from the two chef

threads.

Chapter 14 461

The only update to a shared data structure in this small example is to pop from a list. If we were to
create our own class and implement more complex state changes, we could uncover a number of

interesting and confusing issues with using threads.

The many problems with threads

Threads can be useful if appropriate care is taken to manage shared memory, but modern Python
programmers tend to avoid them for several reasons. As we’ll see, there are other ways to code
concurrent programming that are receiving more attention from the Python community. Let’s

discuss some of the pitfalls before moving on to alternatives to multithreaded applications.

Shared memory
The main problem with threads is also their primary advantage. Threads have access to all the
process memory and thus all the objects in memory. A disregard for the shared state can too easily

cause inconsistencies.

Have you ever encountered a room where a single light has two switches and two different people
turn them on at the same time? Each person — each a separate thread — expects their action to
set the the lamp (a variable) state to on, but the resulting value (the lamp) remains off, which is
inconsistent with those expectations. Now imagine if those two threads were transferring funds

between bank accounts or managing the cruise control for a vehicle.

The solution to this problem in threaded programming is to synchronize access to any code that
reads or (especially) writes a shared variable. Python’s threading library offers the Lock class,
which can be used via the with statement to create a context where a single thread has access to

update shared objects.

The synchronization solution works in general, but it is way too easy to forget to apply it to shared
data in a specific application. Worse, bugs due to inappropriate use of synchronization are really
hard to track down because the order in which threads perform operations is inconsistent. We
can’t easily reproduce the error. Usually, it is safest to force communication between threads to
happen using a lightweight data structure that already uses locks appropriately. Python offers
the queue.Queue class to do this; a number of threads can write to a queue, where a single thread
consumes the results. This gives us a tidy, reusable, proven technique for having multiple threads
sharing a data structure. The multiprocessing.Queue class is nearly identical; we will discuss this

in the Multiprocessing section of this chapter.

462 Concurrency

In some cases, these disadvantages might be outweighed by the one advantage of allowing shared
memory: it’s fast. If multiple threads need access to a huge data structure, shared memory can
provide that access quickly. However, this advantage is usually nullified by the fact that, in Python,
it is impossible for two threads running on different CPU cores to be performing calculations at

exactly the same time. This brings us to our second problem with threads.

The Global Interpreter Lock (GIL)

In order to efficiently manage memory, garbage collection, and calls to machine code in native
libraries, Python has a Global Interpreter Lock, or GIL. Prior to Python 3.13, It was impossible to
turn off. The GIL constrains thread schedule by preventing any two threads from doing computations
at the exact same time; the work is interleaved artificially. When a thread makes an operating
system request — for example, to access the disk or network — the GIL is released as soon as the

thread starts waiting for the operating system request to complete.

The GIL makes it very easy to write programs with multi-step state changes to complicated data
structures. We can remove an item from a list, knowing all subsequent items have to be shuffled
forward in the list, without an explicit lock. It relieves us from the burden of having to sweat the

details of each state change.

The GIL is disparaged, mostly by people who don’t understand what it is or the benefits it brings to
Python. While it can interfere with multithreaded compute-intensive programming, the impact on
other kinds of workloads is often minimal. When confronted with a compute-intensive algorithm,
it may help to switch to using the dask package to manage the processing. See https://dask.org
for more information on this alternative. The book Scalable Data Analysis in Python with Dask can

be informative, also.

The GIL can be selectively disabled in IronPython. See The IronPython Cookbook for details on how

to release the GIL for compute-intensive processing in IronPython.

Python 3.13 introduced code changes that permit a developer to recompile Python without the GIL.
See PEP 703 (https://peps.python.org/pep-0703/). Note that — for now — this is experimental
and requires building a separate Python with the GIL removed. The “free threading” version of
Python requires modules that are designed to support a GIL-free Python. This can mean that your
favorite library extension may not actually work properly without the GIL, and will not even load.
See C API Extension Support for Free Threading (https://docs.python.org/3/howto/free-threa
ding-extensions.html#freethreading-extensions-howto) in the Python HOWTO documents.

https://dask.org
https://peps.python.org/pep-0703/
https://docs.python.org/3/howto/free-threading-extensions.html#freethreading-extensions-howto
https://docs.python.org/3/howto/free-threading-extensions.html#freethreading-extensions-howto

Chapter 14 463

The notion is that after two or three releases — perhaps as early as Python 3.15 or 3.16 — the GIL
would be controlled with a runtime flag instead of a separate build. Removing the GIL requires
some profound changes to the CPython implementation. These changes include how reference
counting works to locate objects in use and no longer referenced, some low-level details of memory
management, thread-safety for Python container objects, as well as how locking and atomic APIs
need to work. While we rarely see these things directly, we see them indirectly and we see their

effects.

Something that seems as simple as passing a mutable object to a function requires some careful
coding in the CPython implementation. Inside the function body, Python tracks two references to
the mutable container: the calling function and the called function both have references. When the
function body finishes, the reference count is decremented by 1. The object doesn’t mysteriously

vanish, though, because the reference count is still at least one.

Building a free-threading Python is way outside the scope of this book. We’ll turn to looking at

some of the overheads involved in programming with threads.

Thread overhead

One additional limitation of threads, as compared to other asynchronous approaches we will be
discussing later, is the cost of maintaining each thread. Each thread takes up a certain amount of
memory (both in the Python process and the operating system kernel) to record the state of that
thread. Switching between the threads also uses a (small) amount of CPU time. This work happens
seamlessly without any extra coding (we just have to call start() and the rest is taken care of), but

the work still has to happen somewhere.

What this means is that simply throwing more threads at a problem has a diminishing return.
Doubling the threads also increases the overhead, and performance improvements are always less

than double.

These costs can be amortized over a larger workload by reusing threads to perform multiple jobs.
Python provides a ThreadPool feature to handle this. It behaves identically to ProcessPool, which

we will discuss shortly, so let’s defer that discussion until later in this chapter.

In the next section, we’ll look at the principal alternative to multi-threading. The multiprocessing

module lets us work with operating system-level subprocesses.

464 Concurrency

Multiprocessing

Threads exist within a single OS process; that’s why they can share access to objects. We can do
concurrent computing at the process level, too. Unlike threads, separate processes cannot directly
access variables set up by other processes. This independence is helpful because each process has
its own GIL and its own private pool of resources. On a modern multi-core processor, a process

may have its own core, permitting concurrent work with other cores.

The multiprocessing API was originally designed to mimic the threading APL. However, the
multiprocessing interface has evolved, and in recent versions of Python, it supports more features
more robustly. The multiprocessing library is designed for when CPU-intensive jobs need to
happen in parallel and multiple cores are available. Multiprocessing is not as useful when the
processes spend a majority of their time waiting on I/O (for example, network, disk, database, or

keyboard), but it is the way to go for parallel computation.

The multiprocessing module spins up new operating system processes to do the work. This means
there is an entirely separate copy of the Python interpreter running for each process. Let’s try to
parallelize a compute-heavy operation using similar constructs to those provided by the threading

API, as follows:

from multiprocessing import Process, cpu_count
from threading impoxt Thread

import time

import os

class MuchCPU(Process):
def run(self) -> None:
print(f"0S PID {os.getpid()}")

=sum(2 * i + 1 for i in range(100_000_000))

if __name__ == "__main__":
workers = [MuchCPU() for f in range(cpu_count())]

t = time.perf_counter()

for p in workers:
p.start()

for p in workers:

Chapter 14 465

p.join()
print(f"work took {time.perf_counter() - t:.3f} seconds")

This example just ties up the CPU computing the sum of 100 million odd numbers. You may not

consider this to be useful work, but it can warm up your laptop on a chilly day!

The API should be familiar; we implement a subclass of Process (instead of Thread) and implement
a run method. This method prints out the operating system process ID (PID), a unique number
assigned to each process on the machine, before doing some intense (if misguided) work.

" n

Pay special attention to the if __name__ == “__main__": guard around the module-level code.
This prevents the application from taking off and running when the module is being imported.
This is a good practice in general, but when using the multiprocessing module, it is absolutely

essential.

Always sequester all top-level processing inside the

u

if __name__ == “__main__": guard.

N\ ! 4
g A module used for multiprocessing must avoid any processing outside function

and class bodies.

Behind the scenes, the multiprocessing module will import our application module inside each
of the new processes in order to create the class and execute the run() method. If we allowed the
entire module to execute at that point, it would start creating new processes recursively until the

operating system ran out of resources, crashing our computer.

This demo constructs one process for each processor core on our machine, then starts and joins
each of those processes. On a 2020-era MacBook Pro with a 2 GHz Quad-Core Intel Core i5, the

output looks as follows:

% python src/processes_1.py
0S PID 15492
0S PID 15493
0S PID 15494
0S PID 15495

0S PID 15497
0S PID 15496
0S PID 15498
0S PID 15499

466 Concurrency

work took 2@.711 seconds

The first eight lines are the PID that was printed inside each MuchCPU instance. The last line shows
that the 100 million summations can run in about 20 seconds. During those 20 seconds, all eight
cores were running at 100 percent. On some laptops, the fans might start buzzing away trying to

dissipate the heat.

If we subclass threading.Thread instead of multiprocessing.Process in MuchCPU, the output

looks as follows:

% python src/processes_1.py
0S PID 15772
0S PID 15772
0S PID 15772
0S PID 15772

0S PID 15772
0S PID 15772
0S PID 15772
0S PID 15772
work took 69.316 seconds

This time, the threads are running inside the same operating system process and take over three
times as long to run. The display showed that no core was particularly busy, suggesting that the
work was being shunted around among the various cores. This is mostly because there are no I/O
or other operating system services during this huge computation. The point of multiple threads is
to allow a thread to proceed while others are waiting for operating system requests. Without any

operating system requests, the threads are all demanding to be scheduled in one lonely core.

We might expect a single process version to take at least eight times as long as the eight-process
version. The lack of a simple multiplier suggests that there are a number of factors involved in how
the low-level instructions are processed by Python, the operating system schedulers, and even the
hardware itself. This suggests that timing predictions are difficult, and it’s best to plan on running

multiple performance tests with multiple software architectures.

Starting and stopping individual Process instances involves a lot of overhead. The most common

use case, therefore, is to create a pool of workers and assign tasks to them. We’ll look at this next.

Chapter 14 467

Multiprocessing pools

Because the OS keeps each process separate from all others, interprocess communication becomes
an important consideration. We need to pass data between these separate processes. One really
common example is having one process write a file that another process can read. When the two
processes are reading and writing a file, and running concurrently, we have to be sure that the
reader is waiting for the writer to produce data. The operating system pipe structure can accomplish
this for us. Within the shell, we can write ps -ef | grep python and pass output from the ps
command to the grep command. The two commands run concurrently. For Windows PowerShell
users, there are similar kinds of pipeline processing, using different command names. (See Pipelines
(https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/04-pipelines?vie

w=powershell-7.1) in the PowerShell documentation for examples.)

The multiprocessing package provides some additional ways to implement interprocess com-
munication. Pools can seamlessly hide the way data is moved between processes. Using a pool
looks much like a function call: you pass data into a function, it is executed in another process
or processes, and when the work is done, a value is returned. It is important to understand how
much work is being done to support this: objects in one process are pickled and passed into an
operating system pipe. Then, another process retrieves data from the pipe and unpickles it. The
requested work is done in the subprocess and a result is produced. The result is pickled and passed
back through the pipe. Eventually, the original process unpickles and returns a Python object.

Collectively, we call these pickling, transferring, and unpickling steps serializing the data.

The serialization to communicate between processes takes time and memory. We want to get as
much useful computation done with the smallest serialization cost. The ideal mix depends on the
size and complexity of the objects being exchanged, meaning that different data structure designs

will have different performance levels.

Performance predictions are difficult to make. It’s essential to profile the application to ensure the

concurrency design is effective.

The code to make all this machinery work is surprisingly simple. Let’s look at the problem of
calculating all the prime factors of a list of random numbers. This is a common part of a variety of

cryptography algorithms (not to mention attacks on those algorithms!).

It requires months, possibly years, of processing power to factor the 232-digit numbers used by
some encryption algorithms. The following implementation, while readable, is not at all efficient; it

would take years to factor even a 100-digit number. That’s okay because we want to see it using

https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/04-pipelines?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/learn/ps101/04-pipelines?view=powershell-7.1

468 Concurrency

lots of CPU time factoring 9-digit numbers:

from math import sqrt, ceil
import random
from multiprocessing.pool import Pool

def prime_factors(value: int) -> list[int]:

if value in {2, 3}:
return [value]
factors: list[int] = []
for divisor in range(2, ceil(sqrt(value)) + 1):
quotient, remainder = divmod(value, divisor)
if not remainder:
factors.extend(prime_factors(divisor))
factors.extend(prime_factors(quotient))
break
else:
factors = [value]
return factors

if __name__ == "__main__":
to_factor = [random.randint(100_000_000, 1_000_000_000) for i in
range(40_960)]
with Pool() as pool:
results = pool.map(prime_factors, to_factor)
primes = [
value for value, factor_list in zip(to_factor, results) if
len(factor_list) ==
1
print(f"9-digit primes {primes}")

Let’s focus on the parallel processing aspects, as the brute-force recursive algorithm for calculating
factors is pretty clear. We create the to_factor list of 40,960 individual numbers. Then we construct
a multiprocessing pool instance. By default, this pool creates a separate process for each of the

CPU cores on the machine it is running on.

The map () method of the pool accepts a function and an iterable. The map () method pickles each of
the values in the iterable and passes them to an available worker process in the pool. The worker

executes the function on the object provided. When that process is finished doing its work, the

Chapter 14 469

map () method pickles the available resulting list of factors so it can be returned to the calling

process. Meanwhile, if the pool has more work available, the worker takes on the next job.

The pickling of results is an important overhead. For small objects (such as num-

\@/_ bers), pickling happens quickly. For complicated objects, it can take more time. In

VA\VAN

H the rare case of a class of objects that can’t be pickled, this approach won’t work at
all.

Once all the workers in the pool are finished processing (which could take some time), a results
list is available to the original process. This process has been waiting patiently for all this work to
complete. The results of map () will be in the same order as the requests. This makes it sensible to

use zip() to match up the original value with the computed prime factors.

It is often more useful to use the similar map_async() method, which returns each result object
immediately. In that case, the results variable is not a list of values, but a contract (or a deal or
an obligation) to return a list of values in the future when the client calls results.get(). This
future object also has methods such as ready() and wait(), which allow us to check whether all

the results are in yet. This is suitable for processing where the completion time is highly variable.

Alternatively, if we don’t know all the values we want to get results for in advance, we can use
the apply_async() method to queue up a single job. If the pool has a process that isn’t already
working, it will start immediately; otherwise, it will hold onto the task until there is a free worker

process available.

Pools can also be closed; they refuse to take any further tasks, but continue to process everything
currently in the queue. They can also be terminated, which goes one step further and refuses to

start any jobs still in the queue, although any jobs currently running are still permitted to complete.
There are a number of constraints on how many workers make sense, including the following:

« Only cpu_count() processes can be computed simultaneously; any number can be waiting.
If the workload is CPU-intensive, a larger pool of workers won’t compute any faster. If the
workload involves a lot of input/output, however, a large pool might improve the rate at

which work is completed.

« For very large data structures, the number of workers in the pool may need to be reduced to

make sure memory is used effectively.

« Communication between processes is expensive; easily serialized data is the best policy.

470 Concurrency

+ Creating new processes takes a non-zero amount of time; a pool of a fixed size helps minimize

the impact of this cost.

The multiprocessing pool gives us a tremendous amount of computing power with relatively little
work on our part. We need to define a function that can perform the parallelized computation, and

we need to map arguments to that function using an instance of the multiprocessing.Pool class.

In many applications, we need to do more than a mapping from a parameter value to a complex
result. For these applications, the simple pool.map() may not be enough. For more complicated
data flows, we can make use of explicit queues of pending work and computed results. We’ll look at

creating a network of queues next.

Queues

If we need more control over communication between processes, the queue.Queue data structure is
useful. There are several variants offering ways to send messages from one process to one or more
other processes. Any picklable object can be sent into a Queue, but remember that pickling can be a
costly operation, so keep such objects small. To illustrate queues, let’s build a little search engine

for text content that stores all relevant entries in memory.

This particular search engine scans all files in the current directory in parallel. A process is
constructed for each core on the CPU. Each of these is instructed to load some of the files into

memory. Let’s look at the function that does the loading and searching:

from collections.abc import Iterator
from pathlib impoxrt Path
from multiprocessing import Queue

type Query_Q = Queue[str | None]
type Result_Q = Queue[list[str]]

def search(paths: list[Path], query_qg: Query_Q, results_q: Result_Q) ->
None:
print(f"PID: {os.getpid()}, paths {len(paths)}")
lines: list[str] = []
for path in paths:
lines.extend(
line.rstrip()

Chapter 14 471

for line in path.read_text().splitlines()

while True:
if (query_text := query_g.get()) is None:
break
results = [line for line in lines if query_text in line]
results_qg.put(results)

Remember, the search() function is run in a separate process (in fact, it is run in cpu_count()
separate processes) from the main process that created the queues. Each of these processes is started
with a list of pathlib.Path objects, and two multiprocessing.Queue objects: one for incoming
queries and one to send outgoing results. These queues automatically pickle the data in the queue
and pass it into the subprocess over a pipe. These two queues are set up in the main process and

passed through the pipes into the search function inside the child processes.
The search() function does two separate things:

1. When it starts, it opens and reads all the supplied files in the list of Path objects. Each line of
text in those files is accumulated into the 1ines list. This preparation is relatively expensive,

but it’s done exactly once.

2. The while statement is the main event-processing loop for search. It uses query_q.get() to
get a request from its queue. It searches lines. It uses results_g.put() to put a response

into the results queue.

The while statement has the characteristic design pattern for queue-based processing. The process
will get a value from a queue of some work to perform, perform the work, and then put the result
into another queue. We can decompose very large and complex problems into processing steps and
queues so that the work is done concurrently, producing more results in less time. This technique

also lets us tailor the processing steps and the number of workers to make best use of a processor.

The main part of the application builds this pool of workers and their queues. We’ll follow the
Facade design pattern (refer back to Chapter 12 for more information). The idea here is to define a

class, DirectorySearch, to wrap the queues and the pool of worker processes into a single object.

This object can set up the queues and the workers, and an application can then interact with them

by posting a query and consuming the replies:

472 Concurrency

from fnmatch import fnmatch
import os

class DirectorySearch:
def _ _init_ (self) -> None:
self.query_queues: list[Query_Q]
self.results_queue: Result_Q
self.search_workers: list[Process]

def setup_search(self, paths: list[Path], cpus: int | None = None) ->
None:
if cpus is None:
cpus = cpu_count()
worker_paths = [paths[i::cpus] for i in range(cpus)]
self.query_queues = [Queue() for p in range(cpus)]
self.results_queue = Queue()

self.search_workers = [
Process(target=search, args=(paths, q, self.results_queue))
for paths, q in zip(worker_paths, self.query_queues)

]

for proc in self.search_workers:
proc.start()

def teardown_search(self) -> None:
Signal process termination
for q in self.query_queues:
g.put(None)

for proc in self.search_workers:
proc.join()

def search(self, target: str) -> Iterator[str]:
print(f"search queues={self.query_queues}")
for q in self.query_queues:
g.put(target)

for i in range(len(self.query_queues)):
for match in self.results_queue.get():
yield match

Chapter 14 473

The setup_search() method prepares the worker subprocesses. The [i::cpus] slice operation lets
us break this list into a number of equally sized parts. If the number of CPUs is 8, the step size will
be 8, and we’ll use 8 different offset values from 0 to 7. We also construct a list of Queue objects to
send data into each worker process. Finally, we construct a single results queue. This is passed into
all of the worker subprocesses. Each of them can put data into the queue and it will be aggregated

in the main process.

Once the queues are created and the workers started, the search () method provides the target to
all the workers at one time. They can then all commence examining their separate collections of

data to emit answers.

Since we’re searching a fairly large number of directories, we use a generator function, all_source(),
to locate all the *.py Path objects under the given base directory. Here’s the function to find all

the source files:

def all_source(path: Path, pattern: str) -> Iterator[Path]:
for root, dirs, files in os.walk(path):
for skip in {".tox", ".mypy_cache", "__pycache__", ".idea",
".venv"}:
if skip in dirs:
dirs.remove (skip)
yield from (Path(root) / f for f in files if fnmatch(f, pattern))

The all_source() function uses the os.walk() function to examine a directory tree, rejecting
file directories that are filled with files we don’t want to look at. This function uses the fnmatch
module to match a filename against the kind of wildcard patterns the Linux shell uses. We can use
a pattern parameter of ' *.py’, for example, to find all files with names ending in .py. This seeds

the setup_search() method of the DirectorySearch class.

The teardown_search() method of the DirectorySearch class puts a special termination value
into each queue. Remember, each worker is a separate process, executing the while statement
inside the search() function and reading from a queue of requests. When it reads a None object, it
will break out of the while statement and exit the function. We can then use the join() to collect
all the child processes, cleaning up politely. (If we don’t do the join(), some Linux distros can
leave “zombie processes” — children not properly rejoined with their parent because the parent

crashed; these consume system resources and often require a reboot.)

Now let’s look at the code that makes a search actually happen:

474 Concurrency

from multiprocessing import Process, Queue, cpu_count
import time

if __name__ == "__main__":
ds = DirectorySearch()
base = Path.cwd().parent
all_paths = list(all_source(base, "*.py"))
ds.setup_search(all_paths)

for target in ("import", "class", "def"):
start = time.perf_counter()
count = 0@

for line in ds.search(target):
print(line) # If you want to see what's going on
count += 1

milliseconds = 1000 * (time.perf_counter() - start)

print(
f"Found {count} {target!r} in {len(all_paths)} files "
f"in {milliseconds:.3f}ms"

)
ds.teardown_search()

This code creates a DirectorySearch object, ds, and provides all of the source paths starting from
the parent of the current working directory, via base = Path.cwd() .parent. Once the workers are
prepared, the ds object performs searches for a few common strings, “import”, “class”, and “def”.
Note that we’ve commented out the print(1line) statement that shows the useful results. We’re
interested in performance of the search. Since there’s nothing we can do about performance of the
operating system graphics kernel updating the console display, we don’t want to measure this. The
initial file reads take a fraction of a second to get started. Once all the files are read, however, the
time to do the search is dramatic. On a MacBook Pro with 134 files of source code, the output looks

like this:

% python src/directory_seaxch.py
PID: 29387, paths 19
PID: 29389, paths 19
PID: 29388, paths 19

PID: 29390, paths 19
PID: 29391, paths 19
PID: 29392, paths 19
PID: 29393, paths 19

Chapter 14 475

PID: 29394, paths 18
Found 611 'import' in 151 files in 19@.105ms

Found 464 'class' in 151 files in 1.293ms
Found 1036 'def' in 151 files in 1.33@ms

The search for “import” took about 190 milliseconds (0.190 seconds.) Why was this so slow
compared to the other two searches? It’s because the search() function was still reading the
files when the first request was put in the queue. The first request’s performance reflects the
one-time startup cost of loading the file content into memory. The next two requests run in about 1
millisecond each. That’s amazing! That’s almost 1,000 searches per second on a laptop with only a

few lines of Python code.

This example of queues to feed data among workers is a single-host version of what could become a
distributed system. Imagine the searches were being sent out to multiple host computers and then
recombined. Now imagine you had access to the fleet of computers in Google’s data centers and

you might understand why they can return search results so quickly!

We won’t discuss it here, but the multiprocessing module includes a manager class that can take a
lot of the boilerplate out of the preceding code. There is even a version of multiprocessing.Manager
that can manage subprocesses on remote systems to construct a rudimentary distributed application.

Check the Python multiprocessing documentation if you are interested in pursuing this further.

The problems with multiprocessing

As with threads, multiprocessing also has problems, some of which we have already discussed.
Sharing data between processes is costly. As we have discussed, all communication between
processes, whether by queues or operating system pipes, requires serializing the objects. Excessive
serialization can dominate processing time. Multiprocessing works best when relatively small
objects are passed between processes and a tremendous amount of work needs to be done on each

object.

Using shared memory can avoid some of the cost of repeated serialization and deserialization. There
are numerous limitations on the kinds of Python objects that can be shared. Shared memory can

help performance, but can also lead to somewhat more complex-looking Python objects.

The other major problem with multiprocessing is that, like threads, it can be hard to tell which
process a variable or method is being accessed in. In multiprocessing, the worker processes inherit

a great deal of data from the parent process. This isn’t shared; it’s a one-time copy. A child can be

476 Concurrency

given a copy of a mapping or a list and mutate the object. The parent won'’t see the effects of the

child’s mutation.

A big advantage of multiprocessing is the absolute independence of processes. We don’t need to
carefully manage locks, because the data is not shared. Additionally, the internal operating system’s
limits on numbers of open files are allocated at the process level; we can have a large number of

resource-intensive processes.

When designing concurrent applications, the focus is on maximizing the use of the CPU to do as
much work in as short a time as possible. With so many choices, we always need to examine the

problem to figure out which of the many available solutions is the best one for that problem.

The notion of concurrent processing is too broad for there to be one right way to do it. Each distinct
problem has a best solution. It’s important to write code in a way that permits adjustment, tuning,

and optimization.

We’ve looked at the two principal tools for concurrency in Python: threads and processes. Threads
exist within a single operating system process, sharing memory and other resources. Processes are
independent of each other, which makes interprocess communication a necessary overhead. Both
of these approaches are amenable to the concept of a pool of concurrent workers waiting to work
and providing results at some unpredictable time in the future. This abstraction of results becoming

available in the future is what shapes the concurrent. futures module. We'll look at this next.

Futures

Let’s start looking at a more asynchronous way of implementing concurrency. The concept of a
“future” or a “promise” is a handy abstraction for describing concurrent work. A future is an object
that wraps a function call. That function call is run in the background, in a thread or a separate
process. The future object has methods to check whether the computation has completed and — if
it has — to get the results. We can think of it as a computation where the results will arrive in the

future, and we can do something else while waiting for them.

See the book Asynchronous Programming with Futures and Promises (https://hub.packtpub.com/a

synchronous-programming- futures-and-promises/) from Packt for some additional background.

In Python, the concurrent. futures module wraps either multiprocessing or threading depend-
ing on what kind of concurrency we need. A future doesn’t completely solve the problem of
accidentally altering shared state, but using futures allows us to structure our code such that it can

be easier to track down the cause of the problem when we do so.

https://hub.packtpub.com/asynchronous-programming-futures-and-promises/
https://hub.packtpub.com/asynchronous-programming-futures-and-promises/

Chapter 14 477

Futures can help manage boundaries between the different threads or processes. Similar to the
multiprocessing pool, they are useful for call-and-answer type interactions, in which processing
can happen in another thread (or process), and then at some point in the future, you will ask it for
the result. It’s a wrapper around multiprocessing pools and thread pools, but it provides a cleaner

API and encourages nicer code.

Let’s see another, more sophisticated file search and analyze an example. In the last section, we
implemented a version of the Linux grep command. This time, we’ll create a simple version of
the find command that bundles in a clever analysis of Python source code. We’ll start with the

analytical part since it’s central to the work we need to be done concurrently:

import ast
from pathlib import Path
from typing import NamedTuple

class ImportResult(NamedTuple):
path: Path
imports: set[str]

@property
def focus(self) -> bool:
return "typing" in self.imports

class ImportVisitor(ast.NodeVisitor):
def __init_ (self) -> None:
self.imports: set[str] = set()

def visit_Import(self, node: ast.Import) -> None:
print(ast.dump(node))
for alias in node.names:
self.imports.add(alias.name)

def visit_ImportFrom(self, node: ast.ImportFrom) -> None:
print(ast.dump(node))
if node.module:
self.imports.add(node.module)

def find_imports(path: Path) -> ImportResult:

478 Concurrency

tree = ast.parse(path.read_text())

iv = ImportVisitor()

iv.visit(tree)

return ImportResult(path, iv.imports)

We’ve defined a few things here. We started with a named tuple, ImportResult, which binds a
Path object and a set of strings together. It has a property, focus, that looks for the specific string,

“typing”, in the set of strings. We’ll see why this string is so important in a moment.

The ImportVisitor class is built using the ast module in the standard library. An Abstract Syntax
Tree (AST) is the parsed source code, usually from a formal programming language. Python code,
after all, is just a bunch of characters; the AST for Python code groups the text into meaningful
statements and expressions, variable names, and operators, all of the syntactic components of the
language. A visitor class has a method to examine the parsed code. We provided overrides for
two methods of the NodeVisitor class, so we will look at only the two kinds of import statements:
import x and from x import y. The details of how each node data structure works are a bit
beyond this example, but the ast module documentation in the standard library describes the

unique structure of each Python language construct.

The find_imports () function reads some source, parses the Python code, visits the import state-
ments, and then returns an ImportResult with the original Path and the set of names found by
the visitor. This is — in many ways — a lot better than a simple pattern match for “import”. For
example, using an ast.NodeVisitor will skip over comments and ignore the text inside character

string literals, two jobs that are hard with regular expressions.

There isn’t anything particularly special about the find_imports() function, but note how it does
not access any global variables. All interaction with the external environment is passed into the
function or returned from it. This is not a technical requirement, but it is the best way to keep your

brain inside your skull when programming with futures.

We want to process hundreds of files in dozens of directories, though. The best approach is to have
lots and lots of these running all at the same time, clogging the cores of our CPU with lots and lots

of computing:

def main(base: Path = Path.cwd()) -> None:
print(f"\n{base}")
start = time.perf_counter()

Chapter 14 479

with futures.ThreadPoolExecutor(24) as pool:
analyzers = [
pool.submit(find_imports, path) for path in all_source(base,
"rpy”)
1
analyzed = (worker.result() for worker in
futures.as_completed(analyzers))
for example in sorted(analyzed):
print(
f*{'->" if example.focus else '':2s} "
f"{example.path.relative_to(base)} {example.imports}"

end = time.perf_counter()
rate = 1000 * (end - start) / len(analyzers)
print(f"Searched {len(analyzers)} files in {base} at {rate:.3f}ms/file")

We’re leveraging the same all_source() function shown in the Queues section earlier in this
chapter; this needs a base directory to start searching in, and a pattern, such as “*.py”, to find all
the files with the . py extension. We've created a ThreadPoolExecutor, assigned to the pool variable,
with two dozen worker threads, all waiting for something to do. We create a list of Future objects
in the analyzers object. This list is created by a list comprehension applying the pool. submit()

method to our search function,find_imports(), and a Path from the output of all_source().

The threads in the pool will immediately start working on the submitted list of tasks. As each thread

finishes work, it saves the results in the Future object and picks up some more work to do.

Meanwhile, in the foreground, the parent application uses a generator expression to evaluate the
result() method of each Future object. Note that the futures are visited using the futures.as_completed()
generator. The function starts providing complete Future objects as they become available. This
means the results may not be in the order that they were originally submitted. There are other
ways to visit the futures; we can, for example, wait until all are complete and then visit them in the

order they were submitted, in case that’s important.

We extract the result from each Future. From the type hints, we can see that this will be an
ImportResult object with a Path and a set of strings; these are the names of the imported modules.

We can sort the results, so the files show up in some sensible order.

On a MacBook Pro, this takes about 1.689 milliseconds (0.001689 seconds) to process each file. The

24 individual threads easily fit in a single process without stressing the operating system. Increasing

480 Concurrency

the number of threads doesn’t materially affect the elapsed runtime, suggesting any remaining
bottleneck is not due to concurrent computation but the initial scan of the directory tree and the

creation of the thread pool.

And the focus feature of the ImportResult class? Why is the typing module special? We needed
to review each chapter’s type hints when a new release of mypy came out during the development
of this book. It was helpful to separate the modules into those that required careful checking and
those that didn’t need to be revised.

And that’s all that is required to develop a futures-based I/O-bound application. Under the hood,
it’s using the same thread or process APIs that we’ve already discussed, but it provides a more
understandable interface. It makes it easier to see the boundaries between concurrently running

functions.

Accessing global variables without proper synchronization can result in a problem called a race
condition. For example, imagine two concurrent writes trying to increment an integer counter.
They start at the same time and both read the current value of the shared variable as 5. One thread
is first in the race; it increments the value and writes 6. The other thread comes in second; it
increments what the variable was and also writes 6. But if two processes are trying to increment a

variable, the expected result would be that it gets incremented by 2, so the result should be 7.

Modern wisdom is that the easiest way to avoid doing this is to keep as much state as possible

private and share them through known-safe constructs, such as queues or futures.

For many applications, the concurrent. futures module is the place to start with designing the
Python code. The lower-level threading and multiprocessing modules offer some additional

constructs for very complex cases.

Using run_in_executor() allows an application to leverage the concurrent.futures module’s
ProcessPoolExecutor or ThreadPoolExecutor classes to farm work out to multiple processes or

multiple threads. This provides a lot of flexibility within a tidy, ergonomic APL

In some cases, we don’t really need concurrent processes. In some cases, we simply need to be able
to toggle back and forth between waiting for data and computing when data becomes available.
The async features of Python, including the asyncio module, can interleave processing within a

single thread. We’ll look at this variation on the theme of concurrency next.

Chapter 14 481

AsynclO

AsynclO combines the concept of futures and an event loop with coroutines. The result is helpful

for writing responsive applications that don’t seem to waste time waiting for input.

For the purposes of working with Python’s async features, a coroutine is a function that is waiting
for an event, and also can provide events to other coroutines. In Python, we implement coroutines
using async def. A function with async must work in the context of an event loop, which switches
control of the thread among the coroutines waiting for events. We’ll see a few Python constructs

using await expressions to show where the event loop can switch to another waiting async function.

It’s crucial to recognize that async operations are interleaved, and not — generally — parallel. At
most one coroutine is in control and processing, and all the others are waiting for an event. The
idea of interleaving is described as cooperative multitasking: an application can be processing
data while also waiting for the next request message to arrive. As data becomes available, the event

loop can transfer control to one of the waiting coroutines.

The AsynclO implementation has a bias toward network I/O. Most networking applications, espe-
cially on the server side, spend a lot of time waiting for data to come in from the network. AsyncIO
can be more efficient than handling each client in a separate thread; then some threads can be
working while others are waiting. The problem is the threads use up memory and other resources.

AsynclO uses coroutines to interleave processing cycles when the data becomes available.

Thread scheduling depends on operating system requests the thread makes (and, to an extent,
the GIL’s interleaving of threads). Process scheduling depends on the overall scheduler for the
operating system. Both thread and process scheduling are preemptive — the thread (or process)
can be interrupted to allow a different, higher-priority thread or process to control the CPU. This
means thread scheduling is unpredictable, and locks are important if multiple threads are going to
update a shared resource. At the operating system level, shared locks are required if two processes
want to update a shared operating system resource such as a file. Unlike threads and processes,
AsynclO coroutines are non-preemptive; they explicitly hand control to each other at specific

points in the processing, removing the need for explicit locking of shared resources.

The asyncio library provides a built-in event loop: this is the loop that handles interleaving control
among the running coroutines. However, the event loop comes with a cost. When we run code in
an async task on the event loop, that code must return immediately, blocking neither on I/O nor on
long-running calculations. This is a minor thing when writing our own code, but it means that any

standard library or third-party functions that block on I/O must be wrapped with an async def

482 Concurrency

function that can handle the waiting politely.

When working with asyncio, we’ll write our application as a set of coroutines that use async and
await syntax to interleave control via the event loop. The top-level “main” program’s job, then,
is simplified to starting the event loop so the coroutines can then hand control back and forth,

interleaving waiting and working.

AsynclO in action

A canonical example of a blocking function is the time.sleep() call. We can’t call the time module’s
sleep() directly, because it would seize control, stalling the event loop and preventing interleaving
of coroutines. We’ll use the version of sleep() in the asyncio module. Used in an await expression,
the event loop can interleave another coroutine while waiting for the sleep() to finish. Let’s use

the asynchronous version of this call to illustrate the basics of an AsynclO event loop, as follows:

import asyncio
import random

async def random_sleep(counter: int) -> None:
delay = random.random() * 5
print(f"{counter} sleeps for {delay:.2f} seconds")
await asyncio.sleep(delay)
print(f"{counter} awakens, refreshed")

async def sleepers(how_many: int = 5) -> None:
print(f"Creating {how_many} tasks")
tasks = [asyncio.create_task(random_sleep(i)) for i in range(how_many)]
print(f"Waiting for {how_many} tasks")
await asyncio.gather(*tasks)

if __name__ == "__main__":

asyncio.run(sleepers(5))
print("Done with the sleepers")

This example covers several features of AsynclO programming. The overall processing is started
by the asyncio.run() function. This starts the event loop, executing the sleepers() coroutine
Within the sleepers() coroutine, we create a handful of individual tasks; these are instances of the

random_sleep() coroutine with a given argument value. random_sleep() uses asyncio.sleep()

Chapter 14 483

to simulate a long-running request.

Note that the print() function involves some overhead. When setting up performance bench-
marking, we’re often pulling a few elements out of a larger application or module. The presence
of print() can help confirm that the processing being benchmarked is working correctly. When

gathering performance numbers, the (print()) statements will often be commented out, using #.

Because this is built using async def functions and an await expression around asyncio.sleep(),
execution of the random_sleep() functions and the overall sleepers() function is interleaved.
While the random_sleep() requests are started in order of their counter parameter value, they

finish in a completely different order. Here’s an example:

python sxc/async_1.py
Creating 5 tasks

Waiting for 5 tasks
sleeps for 4.69 seconds
sleeps for 1.59 seconds
sleeps for 4.57 seconds
sleeps for 3.45 seconds
sleeps for @.77 seconds
awakens, refreshed
awakens, refreshed
awakens, refreshed
awakens, refreshed
awakens, refreshed

Done with the sleepers

0
1
2
3
4
4
1
3
2
0

We can see the random_sleep() function with a counter value of 4 had the shortest sleep time,
and was given control first when it finished the await asyncio.sleep() expression. The order of
waking is strictly based on the random sleep interval, and the event loop’s ability to hand control

from coroutine to coroutine.

As asynchronous programmers, we don’t need to know too much about what happens inside that
run() function, but be aware that it tracks which of the available coroutines are waiting and which

should have control at the current moment.

A task, in this context, is an object that asyncio knows how to schedule in the event loop. This

includes the following:

« Coroutines defined with the async def statement

484 Concurrency

+ asyncio.Future objects: These are almost identical to the concurrent. futures you saw in

the previous section, but for use with asyncio
« Any awaitable object, that is, one with an __await__() function
In this example, all the tasks are coroutines; we’ll see some of the others in later examples.

Look alittle more closely at that s1eepers () coroutine. It first constructs instances of the random_sleep()
coroutine. These are each wrapped in an asyncio.create_task() call, which adds these as futures
to the loop’s task queue so they can execute and start immediately when control is returned to the

loop.

Control is returned to the event loop whenever we call await. In this case, we call await asyncio.gather()

to yield control to other coroutines until all the tasks are finished.

Each of the random_sleep() coroutines prints a starting message, then sends control back to the
event loop for a specific amount of time using its own await calls. When the sleep has completed,
the event loop passes control back to the relevant random_sleep() task, which prints its awakening

message before returning.

The async keyword acts as documentation notifying the Python interpreter (and people reading the
code) that the coroutine contains the await calls. It also does some work to prepare the coroutine
to run on the event loop. It behaves much like a decorator; in fact, back in Python 3.4, it used to be

implemented as an @asyncio.coroutine decorator.

Reading an AsynclO future

An AsynclO coroutine executes each line of code in its body until it encounters an await expression,
at which point it returns control to the event loop. The event loop then executes any other tasks
that are ready to run, including the one that the original coroutine was waiting on. Whenever that
child task completes, the event loop sends the result back into the coroutine so that it can pick up

execution until it encounters another await expression or returns.

This allows us to write code that executes synchronously until we explicitly need to wait for
something. The processing is deterministic. Threads — and processes — on the other hand, depend on
the operating system scheduler and the operating system workload, making them non-deterministic.
The deterministic execution means we don’t need to worry nearly so much about shared state.
Think of the operating system schedulers as intentionally and wickedly evil; they will maliciously

(somehow) find the worst possible sequence of operations among processes and threads.

Chapter 14 485

Throughout this chapter, we’ll hit on one key point fairly often.
\©/ It’s a good idea to limit shared state.

A share nothing philosophy can prevent a ton of difficult bugs stemming from

sometimes-hard-to-imagine timelines of interleaved operations.

The real value of AsynclO is the way it allows us to collect logical sections of code together inside
a single coroutine, even if we are waiting for other work elsewhere. As a specific instance, even
though the await asyncio.sleep call in the random_sleep() coroutine is allowing a ton of stuff
to happen inside the event loop, the coroutine itself looks like it’s doing everything in order. This
ability to read related pieces of asynchronous code without worrying about the machinery that

waits for tasks to complete is the primary benefit of the AsyncIO module.

AsynclO for networking

AsynclO was specifically designed for use with network sockets, so let’s implement a server using
the asyncio module. Looking back at Chapter 13, we created a fairly complex server to catch log
entries being sent from one process to another process using sockets. At the time, we used it as an

example of a complex resource we didn’t want to set up and tear down for each test.

We'll rewrite that example, creating an asyncio-based server that can handle requests from a (large)
number of clients. It can do this by having lots of coroutines, all waiting for log records to arrive.
When a record arrives, one coroutine can save the record, doing some computation, while the

remaining coroutines wait for something to do.

In Chapter 13, we were interested in writing a test for the integration of a log catcher process with

separate log-writing client application processes. Figure 14.1 illustrates the relationships involved.

App Server
G‘

]
application 1 application 2

\ ’

\ /
\SocketHandler ;SocketHandler
\

/

Elsewhere

\ ’ Logging Server -
//if‘t <treads [»writes B
(_socket >————" |og Catcher LogFile

Figure 14.1: The log catcher in the sky

486 Concurrency

The log catcher process creates a socket server to wait for connections from all client applications.
Each of the client applications uses logging.SocketHandler to direct log messages to the waiting

server. The server collects the messages and writes them to a single, central log file.

This test was based on an example with a weak implementation. To keep things simple, the log
server only worked with one application client at a time. We want to revisit the idea of a server that
collects log messages. This improved implementation will handle a very large number of concurrent

clients because it uses AsynclO techniques.

The central part of design is a coroutine that reads log entries from a socket. This involves waiting
for the bytes that comprise a header, then decoding the header to compute the size of the payload.
The coroutine can read the right number of bytes for the log message payload, and then use a

separate coroutine to process the payload. Here’s the log_catcher() function:

SIZE_FORMAT = ">L"
SIZE_BYTES = struct.calcsize(SIZE_FORMAT)

async def log_catcher(
reader: asyncio.StreamReader, writer: asyncio.StreamWriter
) -> None:
count = @
client_socket = writer.get_extra_info("socket")
size_header = await reader.read(SIZE_BYTES)
while size_header:
payload_size = struct.unpack(SIZE_FORMAT, size_header)
bytes_payload = await reader.read(payload_size[0Q])
await log_writer(bytes_payload)
count += 1
size_header = await reader.read(SIZE_BYTES)
print(f"From {client_socket.getpeername()}: {count} lines")

This log_catcher () function implements the protocol used by the 1ogging module’s SocketHandler
class. Each log entry is a block of bytes we can decompose into a header and a payload. We need to
read the first few bytes, saved in size_header, to get the size of the message that follows. Once
we have the size, we can wait for the payload bytes to arrive. Since the two reads are both await
expressions, other coroutines can work while this function is waiting for the header and payload

bytes to arrive.

The log_catcher () function is invoked by a server that provides the coroutine with a StreamReader

Chapter 14 487

and StreamWriter. These two objects wrap the socket pair that is created by the TCP/IP protocol.
The stream reader (and the writer) are properly async-aware objects, and we can use await when

waiting to read bytes from the client.

This log_catcher() function waits for socket data, then provides data to another coroutine,
log_writer(), for conversion and writing. The log_catcher() function’s job is to do a lot of
waiting, and then shuttle the data from reader to writer; it also does an internal computation to
count messages from a client. Incrementing a counter is not much, but it is work that can be done

while waiting for data to arrive.

Here’s a function, serialize(), and a coroutine, log_writer(), to convert log entries to JSON

notation and write them to a file:

TARGET: TextIO
LINE_COUNT = 0@

def serialize(bytes_payload: bytes) -> str:
object_payload = pickle.loads(bytes_payload)
text_message = json.dumps(object_payload)
TARGET .write(text_message)
TARGET .write("\n")
return text_message

async def log_writer(bytes_payload: bytes) -> None:
global LINE_COUNT
LINE_COUNT += 1
await asyncio.to_thread(serialize, bytes_payload)

The serialize() function needs to have an open file, TARGET, to which the log messages are
written. The file open (and close) needs to be taken care of elsewhere in the application; we’ll
look at these operations next. The serialize() function is used by the log_writer() coroutine.
Because log_writer() is an async coroutine, other coroutines will be waiting to read and decode

input messages while this coroutine is writing them.

The serialize() function actually does a fair amount of computation. It also harbors a profound
problem. The file write operation can be blocked, that is, stuck waiting for the operating system to
finish the work. Writing to a disk means handing the work to a disk device and waiting until the
device responds that the write operation is complete. While a microsecond to write a 1,000-character

line of data may seem fast, it’s forever to a CPU. This means all file operations will block their

488 Concurrency

thread waiting for the operation to complete. To work politely with the other coroutines in the
main thread, we assign this blocking work to a separate thread. This is why the log_writer()

coroutine uses asyncio.to_thread() to allocate this work to a separate thread.

Because the log_writer() coroutine uses await on this separate thread, it returns control to the
event loop while the thread waits for the write to complete. This polite await allows other coroutines

to work while the log_writer() coroutine is waiting for serialize() to complete.
We’ve passed two kinds of work to a separate thread:

« A compute-intensive operation. These are the pickle.loads() and json.dumps() opera-

tions.

« A blocking operating system operation. This is TARGET .write(). These blocking operations
include most operating system requests, including file operations. They do not include the
various network streams that are already part of the asyncio module. As we saw in the

log_catcher() function, the streams are already polite users of the event loop.

This technique of passing work to a thread is how we can make sure the event loop is spending as
much time waiting as possible. If all the coroutines are waiting for an event, then whatever happens
next will be responded to as quickly as possible. This principle of many waiters is the secret to a

responsive service.

The LINE_COUNT global variable can raise some eyebrows. Recall from previous sections that
we raised dire warnings about the consequences of multiple threads updating a shared variable
concurrently. With asyncio, we don’t have preemption among threads. Because each coroutine
uses explicit await requests to give control to other coroutines via the event loop, we can update
this variable in the log_writer() coroutine knowing the state change will effectively be atomic —

an indivisible update — among all the coroutines.

This doesn’t make global variables a good idea. Ordinary object-oriented refactoring is still recom-
mended to make sure the state is properly encapsulated in a class. What asyncio does for us is to

eliminate the possibility of concurrent threads overwriting the shared, mutable object’s value.

To make this example complete, here are the imports:

import asyncio

import asyncio.exceptions
import json

from pathlib import Path

Chapter 14 489

import pickle
import struct
from typing import TextIO

Here’s the top-level dispatcher that starts this service:

server: asyncio.AbstractServer

async def main(host: str, port: int) -> None:
global server
server = await asyncio.start_server(
log_catcher,
host=host,
port=port,

if server.sockets:
addr = server.sockets[@].getsockname()
print(f"Serving on {addr}")

else:
raise ValueError("Failed to create server")

async with server:
await server.serve_forever()
server.close_clients()

The main() function contains an elegant way to automatically create new asyncio.Task objects
for each network connection. The asyncio.start_server() function listens at the given host
address and port number for incoming socket connections. For each connection, it creates a new
Task instance using the log_catcher() coroutine; this is added to the event loop’s collection of
coroutines. Once the server is started, the main() function lets it provide services forever using the

server’s serve_forever() method.

A small rewrite — from functions to a class — can replace the global server variable with one that’s

a shared attribute of an object. We’ve left this revision as an exercise for the reader.

The add_signal_handler() method of a loop deserves some explanation. For non-Windows op-
erating systems, a process is terminated via a signal from the operating system. The signals have

small numeric identifiers and symbolic names. For example, the terminate signal has a numeric

490 Concurrency

code of 15 and a name of signal.SIGTERM. When a parent process terminates a child process, this
signal is sent. If we do nothing special, this signal will simply stop the Python interpreter. When
we use the Ctrl + C sequence on the keyboard, this becomes a SIGINT signal, which leads Python

to raise a KeyboardInterrupt exception.

The add_signal_handler() method of the loop lets us examine incoming signals and handle them
as part of our AsynclO processing loop. We don’t want to simply stop with an unhandled exception.
We want to finish the various coroutines and allow any write threads executing the serialize()
function to complete normally. To make this happen, we connect the signal to the server.close()

method. This ends the serve_forever() process cleanly, letting all the coroutines finish.

We have one more step after the server is finished. The sockets are left open. This means that a
client may try to send data to a socket that will never receive the data. In order to signal the client,
the socket must be closed. This is the purpose of the close_clients() method of a server. The
sockets are closed and the clients can behave appropriately. (For example, the client can avoid

trying to write to the closed socket.)

As we saw in the previous AsynclO example, the main program is also a succinct way to start the

event loop:

if __name__ == "__main__":
These often have command-line or environment overrides
HOST, PORT = "localhost", 18842

with Path("one.log").open("w") as TARGET:
try:
asyncio.run(main(HOST, PORT))

except (asyncio.exceptions.CancelledError, KeyboardInterrupt):
ending = {"lines_collected": LINE_COUNT}
print(ending)
TARGET .write(json.dumps(ending) + "\n")

This will open a file, setting the global TARGET variable used by the serialize() function. It uses the
main() function to create the server that waits for connections. When the serve_forever() task
is canceled with a CancelledError or KeyboardInterrupt exception, we can put a final summary
line onto the log file. This line confirms that things completed normally, allowing us to verify that

no lines were lost.

Chapter 14 491

Any other exceptions will be raised normally. This helps us debug any bugs in the server.

Pragmatically, we might want to use the argparse module to parse command-line arguments. We
might want to use a more sophisticated file-handling mechanism in log_writer() so we can limit

the size of log files.

Design considerations

Let’s look at some of the features of this design. First, the log_writer() coroutine passes bytes
into and out of the external thread running the serialize() function. This is better than decoding
the JSON in a coroutine in the main thread because the (relatively expensive) decoding can happen

without stopping the main thread’s event loop.

This call to serialize() is, in effect, a future. In the Futures section, earlier in this chapter, we
saw that there are a few lines of boilerplate for using concurrent. futures. However, when we use
futures with AsynclO, there are almost none at all! When we use await asyncio.to_thread(),
the log_writexr() coroutine wraps the function call in a future and submits it to the internal thread
pool executor. Our code can then return to the event loop until the future completes, allowing
the main thread to process other connections, tasks, or futures. It is particularly important to put
blocking I/O requests into separate threads. When the future is done, the log_writer() coroutine

can finish waiting and can do any follow-up processing.

The main() coroutine used start_server(); the server listens for connection requests. It will
provide client-specific AsynclO read and write streams to each task created to handle a distinct
connection; the task will wrap the log_catcher() coroutine. With the AsynclO streams, reading
from a stream is a potentially blocking call so we can call it with await. This means politely

returning to the event loop until bytes start arriving.

It can help to consider how the workload grows inside this server. Initially, the main() function is the
only coroutine. It creates the server, and now both main() and the server are in the event loop’s
collection of waiting coroutines. When a connection is made, the server creates a new task, and
the event loop now contains main(), the server, and an instance of the log_catcher() coroutine.
Most of the time, all of these coroutines are waiting for something to do: either a new connection
for the server, or a message for the log_catcher(). When a message arrives, it’s decoded and
handed to log_writer(), and yet another coroutine is available. No matter what happens next, the
application is ready to respond. The number of waiting coroutines is limited by available memory,

so a lot of individual coroutines can be patiently waiting for work to do.

492 Concurrency

Next, we'll take a quick look at a log-writing application that uses this log catcher. The application
doesn’t do anything useful, but it can tie up a lot of cores for a long period of time. This will show

us how responsive AsynclO applications can be.

A log writing demonstration
To demonstrate how this log catching works, this client application writes a bunch of messages and
does an immense amount of computing. To see how responsive the log catcher is, we can start a

bunch of copies of this application to stress-test the log catcher.

This client doesn’t leverage asyncio; it’s a contrived example of compute-intensive work with a
few I/O requests wrapped around it. Using coroutines to perform the I/O requests concurrently

with the computation is — by design — unhelpful in this example.

We’ve written an application that applies a variation on the bogosort algorithm to some random
data. Here’s some information on this sorting algorithm: https://rosettacode.org/wiki/Sor
ting_algorithms/Bogosort. This isn’t a practical algorithm, but it’s simple: it enumerates all
possible orderings, searching for one that is the desired, ascending order. Here are the imports and

an abstract superclass, Sorter, for sorting algorithms:

import abc

from collections.abc import Iterable
from itertools import permutations
import logging

import logging.handlexrs

import os

import random

import time

import sys

logger = logging.getlLogger(f"app_{os.getpid()}")

class Sorter(abc.ABC):
def __init_ (self) -> None:
id = os.getpid()
self.logger =
logging.getLogger (f"app_{id}.{self.__class__.__name__}")

@abc.abstractmethod

https://rosettacode.org/wiki/Sorting_algorithms/Bogosort
https://rosettacode.org/wiki/Sorting_algorithms/Bogosort

Chapter 14 493

def sort(self, data: list[float]) -> list[float]:

Next, we’ll define a concrete implementation of the abstract Sorter class:

class BogoSort(Sorter):
@staticmethod
def is_ordered(data: tuple[float, ...]) -> bool:
pairs: Iterable[tuple[float, float]] = zip(data, data[l:])
return all(a <= b for a, b in pairs)

def sort(self, data: list[float]) -> list[float]:
self.logger.info("Sorting %d", len(data))
start = time.perf_counter()

ordering: tuple[float, ...] = tuple(datal[:])
permute_iter = permutations(data)
steps = 0

while not BogoSort.is_ordered(ordering):
ordering = next(permute_iter)
steps += 1

duration = 1000 * (time.perf_counter() - start)
self.logger.info(
"Sorted %d items in %d steps, %.3f ms", len(data), steps,
duration

)

return list(ordering)

The is_ordered() method of the BogoSort class checks to see whether the list of objects has
been sorted properly. The sort () method generates all permutations of the data, searching for a

permutation that satisfies the constraint defined by is_ordered().

Note that a set of n values has n! permutations, so this is a spectacularly inefficient sort algorithm.
There are over 6 billion permutations of 13 values; on most computers, this algorithm can take

years to sort 13 items into order.

A main() function handles the sorting and writes a few log messages. It does a lot of computation,
tying up CPU resources doing nothing particularly useful. Here’s a main program we can use to

make log requests while our inefficient sort is grinding up processing time:

494 Concurrency

def main(workload: int = 1@, sorter: Sorter = BogoSort()) -> int:
total = @
for i in range(workload):
samples = random.randint(3, 10)
data = [random.random() for _ in range(samples)]
sorter.sort(data)
total += samples
return total

if __name__ == "__main__":
LOG_HOST, LOG_PORT = "localhost", 18842
socket_handler = logging.handlers.SocketHandlexr (LOG_HOST, LOG_PORT)
stream_handler = logging.StreamHandler(sys.stderr)
logging.basicConfig(handlers=[socket_handler, stream_handler],
level=1logging.INFO)

start = time.perf_counter()

workload = 10
logger.info("sorting %d collections", workload)
samples = main(workload, GnomeSort())

end = time.perf_counter()
logger.info("produced %d entries, taking %f s", workload * 2 + 2, end -
start)

logging.shutdown()

The top-level script starts by creating a SocketHandler instance; this writes log messages to the log
catcher service shown previously. A StreamHandler instance writes a message to the console. Both
of these are provided as handlers for all the defined loggers. Once the logging is configured, the
main() function is invoked with a random workload. (We’ve highlighted the three lines of work, to

separate it from the clutter of logging configuration.)

On an 8-core MacBook Pro, this was run with 128 workers, all inefficiently sorting random numbers.
The internal operating system time command describes the workload as using 700% of a core; that
is, seven of the eight cores were completely occupied. And yet,there’s still plenty of time left over
to handle the log messages, edit this document, and play music in the background. Using a faster

sort algorithm, we started 256 workers and generated 5,632 log messages in about 4.4 seconds.

Chapter 14 495

This is 1,280 transactions per second and we were still only using 628% of the available 800%. Your
performance may vary. For network-intensive workloads, AsynclO seems to do a marvelous job of
allocating precious CPU time to the coroutine with work to be done, and minimizing the time that

threads are blocked waiting for something to do.

It’s important to observe that AsynclO is heavily biased toward network resources including sockets,
queues, and operating system pipes. The filesystem is not a first-class part of the asyncio module,
and therefore requires us to use the associated thread pool to handle processing that will be blocked

until it’s finished by the operating system.

We'll take a diversion to look at AsynclO to write a client-side application. In this case, we won’t be
creating a server, but instead leveraging the event loop to make sure a client can process data very

quickly.

AsynclO clients

Because it is capable of handling many simultaneous connections, AsynclO is very common for
implementing servers. However, it is a generic networking library and provides full support for
client processes as well. This is pretty important, since many microservices act as clients to other

services.

Clients can be much simpler than servers, as they don’t have to be set up to wait for incoming
connections. We can leverage the await asyncio.gather() function to parcel out a lot of work, and
wait to process the results when they’ve completed. This can work well with asyncio.to_thread(),
which assigns blocking requests to separate threads, permitting the main thread to interleave work

among the coroutines.

We can also create individual tasks that can be interleaved by the event loop. This allows the
coroutines that implement the tasks to cooperatively schedule reading data along with computing

the data that was read.

For this example, we’ll use the httpx library to provide an AsynclO-friendly HTTP request. This
additional package needs to be installed with uv add httpx (if you're using uv as a virtual environ-

ment manager) or python -m pip install httpx.

Here’s an application to make requests to the US weather service, implemented using asyncio.
We'll focus on forecast zones useful for sailors in the Chesapeake Bay area. We’ll start with some

definitions:

496 Concurrency

import asyncio

import re

import time

from typing import NamedTuple
import httpx

class Zone(NamedTuple):
zone_name: str
zone_code: str
same_code: str # Special Area Messaging Encoder

@property
def forecast_url(self) -> str:
return (
f"https://tgftp.nws.noaa.gov/data/forecasts"
f"/marine/coastal/an/{self.zone_code.lowexr()}.txt"

Given the Zone named tuple, we can analyze the directory of marine forecast products, and create a

list of Zone instances that starts like this:

ZONES = [
Zone("Chesapeake Bay from Pooles Island to Sandy Point, MD", "ANZ531",
"@73531"),
Zone("Chesapeake Bay from Sandy Point to North Beach, MD", "ANZ532",
"@73532"),
Zone("Chesapeake Bay from North Beach to Drum Point, MD", "ANZ533",
"@73533"),

etc.

Zone(
"Tangier Sound and the Inland Waters surrounding Bloodsworth
Island",
"ANZ543",
"@73543",
),

Depending on where you’re going to be sailing, you may want additional or different zones.

Chapter 14 497

We need a MarineWX class to describe the work to be done. This is an example of a Command
pattern, where each instance of the class is another thing we wish to do. This class has a run()

method to gather data from a weather service:

class MarineWX:
advisory_pat = re.compile(r"\n\.\.\.(.*?)\.\.\.\n", re.M | re.S)

def _ _init_ (self, zone: Zone) -> None:
super().__init_ ()
self.zone = zone
self.doc = ""

async def run(self) -> None:
Blocking IO assigned to a task.
with urlopen(self.zone.forecast_url) as stream:
self.doc = stream.read().decode("UTF-8")
async with httpx.AsyncClient() as client:
response = await client.get(self.zone.forecast_url)
self.doc = response.text

@property
def advisory(self) -> str:
if match := self.advisory_pat.search(self.doc):
return match.group(1l).replace("\n", " ")
return ""

def __repr_ (self) -> str:
return f"{self.zone.zone_name} {self.advisory}"

The advisory_pat value defines a regular expression to match the . ..some text... portion of the
content. We’ve use two regular expression flags, re.M to do multi-line matching and re.S to permit
the .*? pattern to match all characters, even the end-of-line character. This combination of re.M |

re.S is the common way to find a big block of text.

In this example, the run() method downloads the text document from the weather service via an
instance of the httpx module’s AsyncClient class. A separate property, advisory (), parses the text,
looking for a pattern that marks a marine weather advisory. The sections of the weather service
document really are marked by three periods, a block of text, and three periods. The marine forecast

system is designed to provide an easy-to-process text-centric format with a tiny document size.

498 Concurrency

So far, this isn’t unique or remarkable. We’ve defined a repository of zone information, and a class
that gathers data for a zone. Here’s the important part: a main() function that uses the AsynclO

tasks to gather as much data as quickly as possible:

async def task_main() -> None:
start = time.perf_counter()
forecasts = [MarineWX(z) for z in ZONES]

await asyncio.gather(
*(f.run() for f in forecasts)

for f in forecasts:
print(f)

print(
f"Got {len(forecasts)} forecasts "
f"in {time.perf_counter() - start:.3f} seconds"

if __name__ == "__main__":
asyncio.run(task_main())

The task_main() function, when run in the asyncio event loop, will launch a number of tasks,
each of which is executing the MarineWX. run() method for a different zone. The gather() function
waits until all of them have finished to return the list of futures. Note the use of * to provide the

list as individual positional parameters to the gathex () function.

In this case, we don’t really want the future result from the created threads; we want the state
changes that have been made to all of the MarineWX instances. These will be a collection of Zone
objects and the forecast details. This client runs pretty quickly — we got 13 forecasts in about 300

milliseconds.

The httpx project supports the decomposition of fetching the raw data and processing the data

into separate coroutines. This permits waiting for data to be interleaved with processing.

We’ve hit most of the high points of AsynclO in this section, and the chapter has covered many other
concurrency primitives. Concurrency is a hard problem to solve, and no one solution fits all use
cases. The most important part of designing a concurrent system is deciding which of the available

tools is the correct one to use for the problem. We have seen the advantages and disadvantages

Chapter 14 499

of several concurrency libraries, and now have some insight into which are the better choices for

different types of requirements.

The next topic touches on the question of how “expressive” a concurrency framework or package
can be. We’'ll see how asyncio solves a classic computer science problem with a short, clean-looking

application program.

The dining philosophers benchmark

The faculty of the College of Philosophy in an old seaside resort city (on the Atlantic coast of the
US) has a long-standing tradition of dining together every Sunday night. The food is catered from
Mo’s Deli, but is always — always — a heaping bowl of spaghetti. No one can remember why, but

Mo’s a great chef, and each week’s spaghetti is a unique experience.

The problem in this section isn’t practical. It has a hidden complication with respect

to resource sharing. The idea is be able to write clear code that solves the problem.

RVA We serve this morsel as something the reader can then customize to explore distinct
ways of building this essential algorithm. For example, we suggest refactoring the

various functions into methods to eliminate use of global variables.

The philosophy department is small, having five tenured faculty members. They’re also impover-
ished and can only afford five forks. Because the dining philosophers each require two forks to

enjoy their pasta, they sit around a circular table, so each philosopher has access to two nearby

forks.

500 Concurrency

This requirement for two forks to eat leads to an interesting resource contention problem, shown

in the following diagram:

fam|
Philosopher 4

(Fork3 > (I?ork 1D
—x —
\ /
\ /
\ L
] fam}
Philosopher 2 Philosopher 1
N ,
N p
N /
N /
Ak
(Fork 2>

Figure 14.2: The dining philosophers

Ideally, a philosopher, say Philosopher 4, the department chairperson and an ontologist, will acquire
the two closest forks, Fork 4 and Fork 0, required to eat. Once they’ve eaten, they release the forks

so they can spend some time on philosophy.

There’s a problem waiting to be solved. If each philosopher is right-handed, they will reach out, grab
the fork on their right, and — unable to grab another fork — are stopped. The system is deadlocked

because no philosopher can acquire the resources to eat.

One possible solution is to break the deadlock by using a timeout: if a philosopher can’t acquire
a second fork in a few seconds, they set their first fork down, wait a few seconds, and try again.
If they all proceed at the same tempo, this results in a cycle of each philosopher getting one fork,

waiting a few seconds, setting their forks down, and trying again. Funny, but unsatisfying.

A better solution is to permit only four philosophers at a time to sit at the table. This ensures that
at least one philosopher can acquire two forks and eat. While that philosopher is philosophizing,
the forks are now available to their two neighbors. Additionally, the first to finish philosophizing

can leave the table, allowing the fifth to be seated and join the conversation.

How does this look in code? Here’s the philosopher, defined as a coroutine:

Chapter 14 501

import asyncio
import random

FORKS: list[asyncio.Lock]

async def philosopher(id: int, footman: asyncio.Semaphore) -> tuple[int,
float, float]:
async with footman:
async with FORKS[id], FORKS[(id + 1) % len(FORKS)]:
eat_time = 1 + random.random()
print(f"{id} eating")
await asyncio.sleep(eat_time)
think_time = 1 + random.random()
print(f"{id} philosophizing")
await asyncio.sleep(think_time)
return id, eat_time, think_time

Each philosopher needs to know a few things:

« Their own unique identifier. This is their seat at the table, and directs them to the two

adjacent forks they’re permitted to use.

+ A Semaphore — the footman — who seats them at the table. It’s the footman’s job to have an

upper bound on how many can be seated, thereby avoiding a deadlock.

« A global collection of forks, represented by a sequence of Lock instances, that will be shared

by the philosophers.

The philosophers’ mealtime is described by acquiring and using resources. This is implemented

with the async with statements. The sequence of events looks like this:

1. A philosopher acquires a seat at the table from the footman, a Semaphore. We can think of
the footman as holding a silver tray with four “you may eat” tokens. A philosopher must
have a token before they can sit. When leaving the table, a philosopher drops their token on
the tray. The fifth philosopher is eagerly waiting for the token drop from the first philosopher

who finishes eating.

2. A philosopher acquires the fork with their ID number and the next higher-numbered fork.

The modulo operator assures that the counting of “next” wraps around to 0; (4+1) % 5is 0.

3. With a seat at the table and with two forks, the philosopher may enjoy their pasta. Mo often

502 Concurrency

uses Kalamata olives and pickled artichoke hearts; it’s delightful. Once a month there might

be some anchovies or feta cheese.

4. After eating, a philosopher releases the two fork resources. They’re not done with dinner,
however. Once they’ve set the forks down, they then spend time philosophizing about life,

the universe, and everything.

5. Finally, they relinquish their seat at the table, returning their “you may eat” token to the

footman, in case another philosopher is waiting for it.

Looking at the philosopher () function, we can see that the forks are a global resource, but the
semaphore is a parameter. There’s no compelling technical reason to distinguish between the global
collection of Lock objects to represent the forks and the Semaphore as a parameter. We showed

both to illustrate the two common choices for providing data to coroutines.

The overall dining room is organized like this:

async def main(faculty: int = 5, servings: int = 5) -> None:

global FORKS

FORKS = [asyncio.Lock() for i in range(faculty)]

footman = asyncio.BoundedSemaphore(faculty - 1)

for serving in range(servings):
department = (philosopher(p, footman) for p in range(faculty))
results = await asyncio.gather(*department)
print(results)

if __name__ == "__main__":
asyncio.run(main())

The main() coroutine creates the collection of forks; these are modeled as Lock objects that a
philosopher can acquire. The footman is a BoundedSemaphore object with a limit one fewer than
the size of the faculty; this avoids a deadlock. For each serving, the department is represented
by a collection of philosopher() coroutines. asyncio.gather() waits for all of the department’s

coroutines to complete their work — the interleaved eating and philosophizing.

The beauty of this benchmark problem is to show how well the processing can be stated in the
given programming language and library. The point is not speed, or tricky algorithms, or clever
data structures. The point is to achieve some clear, expressive code for a problem that has a number

of difficult constraints. With the asyncio package, the code is extremely elegant, and seems to be a

Chapter 14 503

succinct and expressive representation of a solution to the problem.

The concurrent. futures library can make use of an explicit ThreadPool. It can approach this level

of clarity but involves a little bit more technical overhead.

The threading and multiprocessing libraries can also be used directly to provide a similar imple-
mentation. Using either of these involves even more technical overhead than the concurrent. futures
library. If the eating or philosophizing involved real computational work — not simply sleeping —
we would see that a multiprocessing version would finish the soonest because the computation
can be spread among several cores. If the eating or philosophizing was mostly waiting for I/O
to complete, it would be more like the implementation shown here, and using asyncio or using

concurrent. futures with a thread pool would work out nicely.

Recall

We’ve looked closely at a variety of topics related to concurrent processing in Python:

« Threads have an advantage of simplicity for many cases. This has to be balanced against the

GIL interfering with compute-intensive multi-threading.

« Multiprocessing has an advantage of making full use of all cores of a processor. This has to
be balanced against interprocess communication costs. If shared memory is used, there is

the complication of encoding and accessing the shared objects.

« The concurrent. futures module defines an abstraction — the future — that can minimize
the differences in application programming used for accessing threads or processes. This

makes it easy to switch and see which approach is fastest.

« The async/await features of the Python language are supported by the AsynclO package.
Because these are coroutines, there isn’t true parallel processing; control switches among

the coroutines allow a single thread to interleave between waiting for I/O and computing.

« The dining philosophers benchmark can be helpful for comparing different kinds of concur-
rency language features and libraries. It’s a relatively simple problem with some interesting

complexities.

+ Perhaps the most important observation is the lack of a trivial one-size-fits-all solution to
concurrent processing. It’s essential to create — and measure — a variety of solutions to

determine a design that makes best use of the computing hardware.

504 Concurrency

Exercises

We’ve covered several different concurrency paradigms in this chapter and still may not have
provided a clear idea of when each one is useful. This lack of clarity suggests that it’s generally
best to develop a few different strategies before committing to one that is measurably better than
the others. The final choice must be based on measurements of the performance of multi-threaded

and multiprocessing solutions.

Concurrency is a huge topic. As your first exercise, we encourage you to search the web to discover
what are considered to be the latest Python concurrency best practices. It can help to investigate
material that isn’t Python-specific to understand operating system primitives such as semaphores,

locks, and queues.

Be sure to search for articles on “free-threading in Python.” These will describe Python without the

GIL. This is still several years away from being available, but it is a possible future for the language.

If you have used threads in a recent application, take a look at the code and see how you can make
it more readable and less bug-prone by using futures. Compare thread and multiprocessing futures

to see whether you can gain anything by using multiple CPUs.

Try implementing an AsynclO service for some basic HTTP requests. If you can get it to the point
that a web browser can render a simple GET request, you’ll have a good understanding of AsyncIO

network transports and protocols.

Make sure you understand the race conditions that happen in threads when you access shared data.
Try to come up with a program that uses multiple threads to set shared values in such a way that

the data deliberately becomes corrupt or invalid.

In Chapter 9, we looked at an example that used subprocess.run() to execute a number of python
-m doctest commands on files within a directory. Review that example and rewrite the code to run

each subprocess in parallel using a futures.ProcessPoolExecutor.

Looking back at Chapter 12, there’s an example that runs an external command to create the figures
for each chapter. This relies on an external application, java, which tends to consume a lot of CPU
resources when it runs. Does concurrency help with this example? Running multiple, concurrent
Java programs seems to be a terrible burden. Is this a case where the default value for the size of a

process pool is too large?

Chapter 14 505

Summary

This chapter ends our exploration of object-oriented programming with a topic that isn’t very
object-oriented. Concurrency is a difficult problem, and we’ve only scratched the surface. While
the underlying operating system abstractions of processes and threads do not provide an API that
is remotely object-oriented, Python offers some really good object-oriented abstractions around
them. The threading and multiprocessing packages both provide an object-oriented interface to
the underlying mechanics. Futures are able to encapsulate a lot of the messy details into a single
object. AsynclO uses coroutine objects to make our code read as though it runs synchronously,

while hiding ugly and complicated implementation details behind a very simple loop abstraction.

Thank you for reading Python Object-Oriented Programming, Fifth Edition. We hope you’ve enjoyed

the ride and are eager to start implementing object-oriented software in all your future projects!

<packt

www . packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?

« Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

« Improve your learning with Skill Plans built especially for you

+ Get a free eBook or video every month

« Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com

for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

www.packt.com
mailto:customercare@packtpub.com
www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

EXPERT INSIGHT @ python”

Mastering
Python

Write powerful an:
the full range of Py pabil

Rick van Hattem Pqu‘t)

Mastering Python - Second Edition
Rick Van Hattem

ISBN:

978-1-80020-772-1

Write beautiful Pythonic code and avoid common Python coding mistakes

Apply the power of decorators, generators, coroutines, and metaclasses

Use different testing systems like pytest, unittest, and doctest

Track and optimize application performance for both memory and CPU usage

Debug your applications with PDB, Werkzeug, and faulthandler

Improve your performance through asyncio, multiprocessing, and distributed computing
Explore popular libraries like Dask, NumPy, SciPy, pandas, TensorFlow, and scikit-learn
Extend Python’s capabilities with C/C++ libraries and system calls

https://www.packtpub.com/en-in/product/mastering-python-2e-9781800207721

EXPERT INSIGHT & python”
Python
Object-Oriented
Programming

Build robust and maintainable
object-oriented Python applications
and libraries

= -7

ot

Steven F. Lott

Dusty Phillips PGCI(T)

Python Object-Oriented Programming - Fourth Edition
Steven F. Lott
Dusty Phillips

ISBN:

978-1-80107-726-2

Implement objects in Python by creating classes and defining methods

Extend class functionality using inheritance

Use exceptions to handle unusual situations cleanly

Understand when to use object-oriented features, and more importantly, when not to use
them

Discover several widely used design patterns and how they are implemented in Python
Uncover the simplicity of unit and integration testing and understand why they are so
important

Learn to statically type check your dynamic code

Understand concurrency with asyncio and how it speeds up programs

https://www.packtpub.com/en-in/product/python-object-oriented-programming-9781801077262

Share Your Thoughts
Once you’ve read Python Object-Oriented Programming, Fifth Edition, we’d love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and share

your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

Subscribe to Deep Engineering

Join thousands of developers and architects who want to understand how software is changing,

deepen their expertise, and build systems that last.

Deep Engineering is a weekly expert-led newsletter for experienced practitioners, featuring original
analysis, technical interviews, and curated insights on architecture, system design, and modern

programming practice.

Scan the QR or visit the link to subscribe for free:

https://packt.link/deep-engineering-newsletter

https://packt.link/r/1-801-07726-6
https://packt.link/deep-engineering-newsletter

A

absolute imports 52
abstract base class

creating 151-153,164-169

exploring 169, 170
Abstract Factory pattern 385

example 386-391

in Python 391, 393
abstraction 13

abstraction levels for car 13
access control 46, 47
actions 10
Adapter pattern 362, 363

example 363-365, 367
aggregation 45, 46
argument values 10
arguments

adding to method 34
assert statement 35
AsynclO 481

clients 495-498

design considerations 491

for networking 485-491

future 484,485

implementing 482, 483

Index

log writing demonstration
492-494
asyncio library 481
attributes 8

B
behaviors 2,10
adding to class data with
properties 132-135
boundary value analysis 416
built-in functions, Python
enumerate() function 248, 249
len() function 246, 247
reversed() function 247,248
built-ins
extending 176-179
immutable objects 176
mutable collections 177

C
callable objects 28, 277, 278
callback function 269-274
CapWords notation 30
class 426,27

calling 30

514

Index

versus objects 33
class diagram 5,7
with attributes 8
with methods 11
class variables 71
code coverage 447
collaboration 17
collections 154
ABCs 154,155
collections.abc module 156-164
Command pattern 336
example 337-342
composite node 393
Composite pattern 393, 394
example 394-400
composition 17
as alternative to inheritance 77,
78
in action 43-45
comprehensions 288
dictionary comprehension 291
list comprehensions 288-290
set comprehension 291
concurrency 455
future 476, 478-480
concurrent processing 456, 457
constructor 37
Container 16
Container ABC 155
cooperative multitasking 481
coroutine 481
coverage tool 414
coverage.py 447

Cribbage implementation 387

D

data 2,8

database module 55

dataclasses 212, 213, 215

decomposition 18

Decorator pattern 312
example 313-315, 317-321
in Python 321-325

decorators

used, for creating properties 138

default parameter

values 252-258
defaults 39
Dependency Inversion Principle 16
design decision 132
design patterns 284
design principles

SOLID 14
development process 450
diamond inheritance 84
diamond problem 83, 84, 86-89
dictionaries 216-219

design choices 223

typed dictionaries 220-222
dictionary comprehension 291, 292
dictionary key 224
dining philosophers benchmark

499-502

docstrings 39-41,43
doctest tool 40, 262, 263

Index

515

Don't Repeat Yourself (DRY) 365
dot notation 31
duck typing 97,149, 156, 196

E

encapsulation 12

equivalence partitioning 416

errors 102

event loop 481

exceptional circumstances
defining 117-120

exceptions
categories 101
defining 114-117
effects 104-106
handling 106-112
hierarchy 113
raising 100, 102-104

F
Facade pattern 367
example 368, 369, 371
First In First Out (FIFO) 237
Flyweight pattern 372, 373
example 374-376, 378-380
memory optimization, via
Python's__slots__
383,384
multiple messages in buffer
381, 382
function objects 267-269
functions
for patching class 274-277

futures 476, 477

G

generator expressions 293, 294

generator functions 295-298, 300
items, yielding 300, 302

generator stacks 302-306

generic collections 195

generic types 195

Git 62

global interpreter lock (GIL) 462

global keyword 56

H
hashable 224
Hypothesis package 449

immutable objects 176
information hiding 12
inheritance 18, 149, 150
applying, in practice 70
built-in classes, extending
73-75
example 68, 69
multiple inheritance 78-82
overriding 76,77
sets of arguments, managing

89-92
super() 77
usage 70-72

initialization function
adding, on Point class 37, 38

516

Index

instance variable 8

Integrated Development Environments
(IDEs) 29

integration tests 414

interface 12

Interface Segregation Principle 15

Internet of Things (loT) 364

Internet of Things (IoT) problems 343

iterator protocol 285-288
iterators 284

K
kernel 457
keyword arguments 265, 266

L
least recently used (LRU) values 323
len() function 246
lint checking 199
linting 199
Liskov Substitution Principle 16
list comprehensions 288-290
lists 225-227
sorting 227,228, 230-233

M

mapping 289

mapping abstractions 157,158
math.hypot() function 35
members 8

metaclass 152,170, 180-185
method 10, 33

method overloading 250, 251
Method Resolution Order (MRO)
algorithm 87
mixin 79, 92
mocks 438
module-level global 55
modules 48,50
absolute imports 52
code, organizingin 55-59
organizing 51
packages 54
relative imports 53
monkey patching 276
move() method 34
multiple inheritance 78-82
diamond problem 83, 84,
86-89
polymorphism 93-96
multiprocessing 464-466
limitations 475, 476
pools 467,469, 470
queues 470, 471,473-475
multiprocessing APl 464
multiprocessing module 464
mutable collections 177
mypy 28, 36, 38,43,74,79, 91, 96,191,
197, 212, 252, 270, 368
installing 197,198

N

name mangling 47
named tuples 209
via typing.NamedTuple 209-212

Index

517

NamedTuple class definition 200
namespace 52
nodes 393

(o)
object 2,4,126-132
collaboration 17
identifying 126
initialization 36
initializing 38
interaction 32
object imitation, with mocks 438,
440, 441
patching techniques 442-444
senitel object 445, 446
object-oriented analysis (OOA) 2
object-oriented design (OOD) 3
object-oriented exploration 3
object-oriented programming (OOP)
2,3
Observer pattern 325, 326
example 326, 327, 329, 330
Open/Closed Principle 15
operator overloading 170-173, 175
optional parameters 191
overloaded methods 193, 194
overriding 76,77

P

package 51,52,54

personally identifiable information (PII)
116

pick action 10

PIL project 332
pillow module 332
PlantUML application 369
Point class 35
polymorphism 93-96
preemptive 481
properties 8,136, 137
creating, with decorators 139
creating, with decorators 138
usage scenarios 140-143
property() function 136
protocol 156, 196
pydantic dataclass 201
Pydantic package 200
Pydantic version 1.10 63
pyprojecttoml 200
pyright 28, 38,131, 191, 197
installing 197,198
pytest
setup and teardown functions
422-429
pytest fixtures, for setup functions
setup functions 422
Python
built-in functions 246
Python classes
attributes, adding 30, 31
creating 29, 30
Python objects working, core rules
26
Python Package Index (PyPI)
URL 60
Python script

518 Index

reading 19, 21,22 splash radius 365

State pattern 342

Q example 342-344,346-351
queue 237 versus Strategy pattern 351,

implementing 238 352

types 237-240 Strategy pattern 331
example 332-335

R in Python 335, 336

race condition 480
randint() function 49
random module 48

relative imports 53

reset method 32,34
reversed() function 247,248
ruff 49

S

self argument 33
set comprehension 291, 292
sets 233-237
Single Responsibility Principle 17
Singleton pattern 352
implementation 353, 354, 356,
357
SOLID principles 14
Dependency Inversion Principle
16
Interface Segregation Principle
15
Liskov Substitution Principle 16
Open/Closed Principle 15
Single Responsibility Principle
17

super() 77
syntactic sugar 74

T
tabletop role-playing games (TTRPGs)
173
tagged union 228
Template pattern 400, 401
example 401-405
test-driven development 413
testing
code testing 447-449
need for 412
objectives 414
patterns 415, 416
process 450
third-party libraries 60
threads 458-460
threads, limitations 461
global interpreter lock (GIL) 462
shared memory 461, 462
thread overhead 463
tox 368
tuple unpacking 207
tuples 206-208

Index

519

type 27
type hints 27,28, 38, 39,190, 191
checking 198
runtime value checking 200,
202
typed dictionaries 220-222
TypedDict class definition 200

U

UML diagram 5

Unified Modeling Language (UML) 4,

6
union 192,228
unit testing, with pytest 419-421
pytest fixtures, for setup and
teardown 425-429

pytest's setup and teardown
functions 422-424
sophisticated fixtures 429, 430,
432-435
tests, skipping 436, 437
unit tests 414
with unittest 416, 418

\)
variable 28
variable argument lists 258-263,

265
variadic arguments 258
virtual environment 61-63

management 63

	Cover
	FM
	Copyright
	Contributors
	Table of Contents
	Preface
	Free Benefits with Your Book

	Chapter 1: Object-Oriented Design
	Technical requirements
	What object-oriented means
	Objects and classes
	Specifying attributes and behaviors
	Data describes object state
	Behaviors are actions

	Hiding details and creating the public interface
	Design principles
	Interface Segregation Principle
	Open/Closed Principle
	Liskov Substitution Principle
	Dependency Inversion Principle
	Single Responsibility Principle

	Collaboration among objects
	A potential mess
	Reading a big script

	Recall
	Exercises
	Summary

	Chapter 2: Objects in Python
	Technical requirements
	Introducing types and classes
	Creating Python classes
	Adding attributes
	Making it do something
	Talking about yourself
	More arguments

	Initializing the object
	Type hints and defaults
	Explaining yourself with docstrings

	Composition and decomposition
	Who can access my data?
	Modules and packages
	Organizing modules
	Absolute imports
	Relative imports
	Packages as a whole

	Organizing our code in modules

	Third-party libraries and virtual environments
	Virtual environment management
	Recall
	Exercises
	Summary

	Chapter 3: When Objects Are Alike
	The inheritance relationship
	Using inheritance
	Extending built-ins
	Overriding and super()

	Composition as an alternative to inheritance
	Multiple inheritance
	The diamond problem
	Different sets of arguments

	Polymorphism
	Recall
	Exercises
	Summary

	Chapter 4: Expecting the Unexpected
	Raising exceptions
	Raising an exception
	The effects of an exception

	Handling exceptions
	The exception hierarchy

	Defining our own exceptions
	Exceptions aren't exceptional

	Recall
	Exercises
	Summary

	Chapter 5: When to Use Object-Oriented Programming
	Treat objects as objects
	Adding behaviors to class data with properties
	Properties in detail
	Decorators—another way to create properties
	Deciding when to use properties

	Scripts to functions to classes
	Recall
	Exercises
	Summary

	Chapter 6: Abstract Base Classes and Operator Overloading
	Creating an abstract base class
	The ABCs of collections
	Abstract base classes and protocols
	The collections.abc module
	Creating your own abstract base class
	Demystifying the magic

	Operator overloading
	Extending built-ins
	Metaclasses
	Recall
	Exercises
	Summary

	Chapter 7: Python Type Hints
	Type hints and object-oriented programming
	Optionality and unions
	Overloaded methods
	Generic types
	Protocols and duck typing

	Static checking and linting
	Installing tools
	Checking type hints
	Comparing tools
	Lint checking

	Runtime value checking and the Pydantic package
	Recall
	Exercises
	Summary

	Chapter 8: Python Data Structures
	Tuples and named tuples
	Named tuples via typing.NamedTuple

	Dataclasses
	Dictionaries and typed dictionaries
	Typed dictionaries
	Dictionary design choices
	Dictionary keys

	Lists
	Sorting lists

	Sets
	Three types of queues
	Recall
	Exercises
	Summary

	Chapter 9: The Intersection of Object-Oriented and Functional Programming
	Python built-in functions
	The len() function
	The reversed() function
	The enumerate() function

	An alternative to method overloading
	Default values for parameters
	Additional details on defaults

	Variable argument lists
	Unpacking arguments

	Functions are objects too
	Function objects and callbacks
	Using functions to patch a class
	Callable objects

	Recall
	Exercises
	Summary

	Chapter 10: The Iterator Pattern
	Design patterns in brief
	Iterators
	The iterator protocol

	Comprehensions
	List comprehensions
	Set and dictionary comprehensions
	Generator expressions

	Generator functions
	Yielding items from another iterable
	Generator stacks

	Recall
	Exercises
	Summary

	Chapter 11: Common Design Patterns
	The Decorator pattern
	A Decorator example
	Decorators in Python

	The Observer pattern
	An Observer example

	The Strategy pattern
	A Strategy example
	Strategy in Python

	The Command pattern
	A Command example

	The State pattern
	A State example
	State versus Strategy

	The Singleton pattern
	Singleton implementation

	Recall
	Exercises
	Summary

	Chapter 12: Advanced Design Patterns
	The Adapter pattern
	An Adapter example

	The Façade pattern
	A Façade example

	The Flyweight pattern
	A Flyweight example in Python
	Multiple messages in a buffer
	Memory optimization via Python's __slots__

	The Abstract Factory pattern
	An Abstract Factory example
	Abstract Factories in Python

	The Composite pattern
	A Composite example

	The Template pattern
	A Template example

	Recall
	Exercises
	Summary

	Chapter 13: Testing Object-Oriented Programs
	Why test?
	Test-driven development
	Testing objectives
	Testing patterns

	Unit testing with unittest
	Unit testing with pytest
	pytest's setup and teardown functions
	pytest fixtures for setup and teardown
	More sophisticated fixtures
	Skipping tests with pytest

	Imitating objects using mocks
	Additional patching techniques
	The sentinel object

	How much testing is enough?
	Testing and development
	Recall
	Exercises
	Summary

	Chapter 14: Concurrency
	Background on concurrent processing
	Threads
	The many problems with threads
	Shared memory
	The Global Interpreter Lock (GIL)
	Thread overhead

	Multiprocessing
	Multiprocessing pools
	Queues
	The problems with multiprocessing

	Futures
	AsyncIO
	AsyncIO in action
	Reading an AsyncIO future
	AsyncIO for networking
	Design considerations

	A log writing demonstration
	AsyncIO clients

	The dining philosophers benchmark
	Recall
	Exercises
	Summary

	Other Books You May Enjoy
	Index

